Alex Burant
- Assistant Professor of Practice
Contact
- (520) 621-2778
- Physics-Atmospheric Sciences, Rm. 378
- Tucson, AZ 85721
- burant@arizona.edu
Degrees
- Ph.D. Physics
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Characterizing Hyperpolarized 129Xe Depolarization Mechanisms During Continuous-flow Spin Exchange Optical Pumping and as a Source of Image Contrast
- B.S. Physics
- James Madison University, Harrisonburg, Virginia, United States
Work Experience
- University of Arizona, Tucson, Arizona (2018 - Ongoing)
Interests
No activities entered.
Courses
2024-25 Courses
-
Accl Intro Mechanics
PHYS 161H (Spring 2025) -
Intro Studio Physics I
PHYS 110 (Spring 2025) -
Accl Intr Optics+Thermod
PHYS 162H (Fall 2024) -
Electricity+Magnetism I
PHYS 331 (Fall 2024) -
Intro Optics + Thermodyn
PHYS 142 (Fall 2024) -
Introductory Physics I
PHYS 102 (Fall 2024)
2023-24 Courses
-
Introductory Physics II
PHYS 103 (Spring 2024) -
Preceptorship
PHYS 391 (Spring 2024) -
Science of Good Cooking
PHYS 200 (Spring 2024) -
Hnr Intro Rel+Quant Phys
PHYS 263H (Fall 2023) -
Intro E&M Lab
PHYS 239 (Fall 2023) -
Intro Elec+Magnetism
PHYS 241 (Fall 2023) -
Intro Electric+Magnetism
PHYS 240 (Fall 2023)
2022-23 Courses
-
Hnr Intro Rel+Quant Phys
PHYS 263H (Spring 2023) -
Intro Electric+Magnetism
PHYS 240 (Spring 2023) -
Hnrs Intr Optics+Thermod
PHYS 162H (Fall 2022) -
Intro Mechanics Lab
PHYS 139 (Fall 2022) -
Intro Optics + Thermodyn
PHYS 142 (Fall 2022) -
Introductory Mechanics
PHYS 141 (Fall 2022) -
Preceptorship
PHYS 391 (Fall 2022)
2021-22 Courses
-
Intro Laboratory I
PHYS 181 (Spring 2022) -
Intro Optics + Thermodyn
PHYS 142 (Spring 2022) -
Intro Optics + Thermodyn
PHYS 143 (Spring 2022) -
Introductory Physics I
PHYS 102 (Spring 2022) -
Hnr Intro Rel+Quant Phys
PHYS 263H (Fall 2021) -
Introductory Mechanics
PHYS 140 (Fall 2021) -
Introductory Mechanics
PHYS 141 (Fall 2021) -
Preceptorship
PHYS 391 (Fall 2021)
2020-21 Courses
-
Introductory Physics II
PHYS 103 (Summer I 2021) -
Hnrs Intr Optics+Thermod
PHYS 162H (Spring 2021) -
Honr Intro Electr+Magnet
PHYS 261H (Spring 2021) -
Intro E&M Lab
PHYS 239 (Spring 2021) -
Intro Elec+Magnetism
PHYS 241 (Spring 2021) -
Intro Electric+Magnetism
PHYS 240 (Spring 2021) -
Intro Optics + Thermodyn
PHYS 142 (Spring 2021) -
Intro Optics + Thermodyn
PHYS 143 (Spring 2021) -
Preceptorship
PHYS 391 (Spring 2021) -
Hnr Intro Rel+Quant Phys
PHYS 263H (Fall 2020) -
Intro E&M Lab
PHYS 239 (Fall 2020) -
Intro Elec+Magnetism
PHYS 241 (Fall 2020) -
Intro Electric+Magnetism
PHYS 240 (Fall 2020) -
Preceptorship
PHYS 391 (Fall 2020)
2019-20 Courses
-
Introductory Physics II
PHYS 103 (Summer I 2020) -
Hnrs Intr Optics+Thermod
PHYS 162H (Spring 2020) -
Honr Intro Electr+Magnet
PHYS 261H (Spring 2020) -
Intro E&M Lab
PHYS 239 (Spring 2020) -
Intro Elec+Magnetism
PHYS 241 (Spring 2020) -
Intro Electric+Magnetism
PHYS 240 (Spring 2020) -
Intro Optics + Thermodyn
PHYS 142 (Spring 2020) -
Hnrs Intr Optics+Thermod
PHYS 162H (Fall 2019) -
Honors Intro Mechanics
PHYS 161H (Fall 2019) -
Intro Mechanics Lab
PHYS 139 (Fall 2019) -
Intro Optics + Thermodyn
PHYS 142 (Fall 2019) -
Intro Optics + Thermodyn
PHYS 143 (Fall 2019) -
Introductory Mechanics
PHYS 140 (Fall 2019) -
Introductory Mechanics
PHYS 141 (Fall 2019) -
Preceptorship
PHYS 391 (Fall 2019)
2018-19 Courses
-
Introductory Physics II
PHYS 103 (Summer I 2019) -
Honors Intro Mechanics
PHYS 161H (Spring 2019) -
Honr Intro Electr+Magnet
PHYS 261H (Spring 2019) -
Intro Elec+Magnetism
PHYS 241 (Spring 2019) -
Introductory Mechanics
PHYS 140 (Spring 2019) -
Introductory Mechanics
PHYS 141 (Spring 2019) -
Hnr Intro Rel+Quant Phys
PHYS 263H (Fall 2018) -
Introductory Physics II
PHYS 103 (Fall 2018)
2017-18 Courses
-
Introductory Physics II
PHYS 103 (Summer I 2018)
Scholarly Contributions
Journals/Publications
- Kelley, M., Burant, A., & Branca, R. T. (2020). Resolving the discrepancy between theoretical and experimental polarization of hyperpolarized 129Xe using numerical simulations and in situ optical spectroscopy. Journal of Applied Physics, 128(14), 144901. doi:10.1063/5.0019074More infoFor emerging biomedical applications of hyperpolarized xenon, the ability to obtain reliably high nuclear spin polarization levels is paramount. Yet, experimental nuclear spin polarization levels of xenon are highly variable and, more than often than not, well below what theory predicts. Despite rigorous and well-studied theoretical models for hyperpolarization and continuous-flow spin-exchange optical pumping (SEOP), there remains a substantial discrepancy between the theoretical and experimental polarization of 129Xe; inexplicably, seemingly similar experimental parameters can yield very different polarization values. In this paper, the validity of the assumptions typically made about the thermodynamic state of the Rb vapor inside the optical pumping cell and the gas dynamics are investigated through finite element analysis simulations of realistic optical pumping cell models, while in situ optical and nuclear magnetic resonance spectroscopy measurements are used to validate the results of the simulations. Our results show that shorter xenon gas residence times and lower Rb vapor densities than those predicted by empirical saturated vapor pressure curves, along with incorrect SEOP parameters, are the primary cause of the discrepancy between theoretical and experimental polarization values reported in the literature.