Grey Farrell
- Assistant In Extension
Contact
- (928) 614-5560
- Forbes, Rm. 322
- Tucson, AZ 85721
- gfarrell@cals.arizona.edu
Bio
No activities entered.
Interests
No activities entered.
Courses
No activities entered.
Scholarly Contributions
Journals/Publications
- Farrell, J. -., Luo, J., & Farrell, J. -. (2013). Understanding pH Effects on Trichloroethylene and Perchloroethylene Adsorption to Iron in Permeable Reactive Barriers for Groundwater Remediation. International journal of environmental science and technology : IJEST, 10(1).More infoMetallic iron filings are becoming increasing used in permeable reactive barriers for remediating groundwater contaminated by chlorinated solvents. Understanding solution pH effects on rates of reductive dechlorination in permeable reactive barriers is essential for designing remediation systems that can meet treatment objectives under conditions of varying groundwater properties. The objective of this research was to investigate how the solution pH value affects adsorption of trichloroethylene (TCE) and perchloroethylene (PCE) on metallic iron surfaces. Because adsorption is first required before reductive dechlorination can occur, pH effects on halocarbon adsorption energies may explain pH effects on dechlorination rates. Adsorption energies for TCE and PCE were calculated via molecular mechanics simulations using the Universal force field and a self-consistent reaction field charge equilibration scheme. A range in solution pH values was simulated by varying the amount of atomic hydrogen adsorbed on the iron. The potential energies associated TCE and PCE complexes were dominated by electrostatic interactions, and complex formation with the surface was found to result in significant electron transfer from the iron to the adsorbed halocarbons. Adsorbed atomic hydrogen was found to lower the energies of TCE complexes more than those for PCE. Attractions between atomic hydrogen and iron atoms were more favorable when TCE versus PCE was adsorbed to the iron surface. These two findings are consistent with the experimental observation that changes in solution pH affect TCE reaction rates more than those for PCE.
- Farrell, G., Liao, Z., Gu, Z., Schulz, M. C., Davis, J. R., Baygents, J. C., & Farrell, G. -. (2009). Treatment of cooling tower blowdown water containing silica, calcium and magnesium by electrocoagulation. Water science and technology : a journal of the International Association on Water Pollution Research, 60(9).More infoThis research investigated the effectiveness of electrocoagulation using iron and aluminium electrodes for treating cooling tower blowdown (CTB) waters containing dissolved silica (Si(OH)(4)), Ca(2 + ) and Mg(2 + ). The removal of each target species was measured as a function of the coagulant dose in simulated CTB waters with initial pH values of 5, 7, and 9. Experiments were also performed to investigate the effect of antiscaling compounds and coagulation aids on hardness ion removal. Both iron and aluminum electrodes were effective at removing dissolved silica. For coagulant doses < or =3 mM, silica removal was a linear function of the coagulant dose, with 0.4 to 0.5 moles of silica removed per mole of iron or aluminium. Iron electrodes were only 30% as effective at removing Ca(2 + ) and Mg(2 + ) as compared to silica. There was no measurable removal of hardness ions by aluminium electrodes in the absence of organic additives. Phosphonate based antiscaling compounds were uniformly effective at increasing the removal of Ca(2 + ) and Mg(2 + ) by both iron and aluminium electrodes. Cationic and amphoteric polymers used as coagulation aids were also effective at increasing hardness ion removal.
- Farrell, J. -., Carter, K. E., & Farrell, J. -. (2009). Electrochemical oxidation of trichloroethylene using boron-doped diamond film electrodes. Environmental science & technology, 43(21).More infoThis research investigated the oxidation of trichloroethene (TCE) at boron-doped diamond film electrodes. Flow-through experiments in gastight reactors were performed to determine trichloroethene oxidation products, and rotating disk electrode (RDE) experiments were used to determine TCE oxidation kinetics. RDE experiments were performed over a range in current densities and temperatures in order to elucidate the rate-limiting mechanisms for TCE oxidation. Density functional theory (DFT) simulations were used to investigate the activation barriers for oxidation by direct electron transfer and hydroxyl radicals. Oxidation of TCE produced formate, carbon dioxide, chlorate, and chloride. DFT simulations, experimentally measured apparent activation energies, and linear sweep voltammetry scans indicated that TCE oxidation occurred via direct electron transfer at electrode potentials
- Farrell, J. -., Chaplin, B. P., Schrader, G., & Farrell, J. -. (2009). Electrochemical oxidation of N-nitrosodimethylamine with boron-doped diamond film electrodes. Environmental science & technology, 43(21).More infoThis research investigated NDMA oxidation by boron-doped diamond (BDD) film electrodes. Oxidation rates were measured as a function of electrode potential, current density, and temperature using rotating disk and flow-through reactors. Final NDMA reaction products were carbon dioxide, ammonium, and nitrate, with dimethylamine and methylamine as intermediate products. Reaction rates were first-order with respect to NDMA concentration and surface area normalized oxidation rates as high as 850 +/- 50 L/m(2)-hr were observed at a current density of 10 mA/cm(2). The flow-through reactor yielded mass transfer limited reaction rates that were first-order in NDMA concentration, with a half-life of 2.1 +/- 0.1 min. Experimental evidence indicates that NDMA oxidation proceeds via a direct electron transfer at potentials >1.8 V/SHE with a measured apparent activation energy of 3.1 +/- 0.5 kJ/mol at a potential of 2.5 V/SHE. Density functional theory calculations indicate that a direct two-electron transfer can produce a stable NDMA((+2)) species that is stabilized by forming an adduct with water. The transfer of two electrons from NDMA to the electrode allows an activation-less attack of hydroxyl radicals on the NDMA((+2)) water adduct. At higher overpotentials the oxidation of NDMA occurs by a combination of direct electron transfer and hydroxyl radicals produced via water electrolysis.
- Farrell, J. -., Carter, K. E., & Farrell, J. -. (2008). Oxidative destruction of perfluorooctane sulfonate using boron-doped diamond film electrodes. Environmental science & technology, 42(16).More infoThis research investigated the oxidative destruction of perfluorooctane sulfonate at boron-doped diamond film electrodes. Experiments measuring oxidation rates of PFOS were performed over a range in current densities and temperatures using a rotating disk electrode (RDE) reactor and a parallel plate flow-through reactor. The oxidation of PFOS yielded sulfate, fluoride, carbon dioxide, and trace levels of trifluoroacetic acid. Reaction rates in the RDE reactor were zeroth order in PFOS concentration. Reaction rates in the flow-through reactor were mass-transfer-limited and were pseudo-first-order in PFOS concentration, with a half-life of 5.3 min at a current density of 20 mA/cm2. Eyring analysis of the zeroth order rate constants at a fixed electrode potential yielded an apparent activation energy of 4.2 kJ/mol for PFOS oxidation. Density functional theory (DFT) simulations were used to calculate activation barriers for different possible reaction mechanisms, including oxidation by hydroxyl radicals at different sites on the PFOS molecule, and direct electron transfer. A comparison of the experimentally measured apparent activation energy with those calculated using DFT indicated that the most likely rate-limiting step for PFOS oxidation was direct electron transfer.
- Farrell, J. -., Mishra, D., Liao, Z., & Farrell, J. -. (2008). Understanding reductive dechlorination of trichloroethene on boron-doped diamond film electrodes. Environmental science & technology, 42(24).More infoThis research investigated reduction of trichloroethylene (TCE) at boron-doped diamond (BDD) film cathodes using a rotating disk electrode reactor. Rates of TCE reduction were determined as functions of the electrode potential and TCE concentration over a temperature range between 2 and 32 degrees C. Reduction of TCE resulted in production of acetate and chloride ions with no detectable intermediate products. At a current density of 15 mA/cm2 and concentrations below 0.75 mM, reaction rates were first order with respect to TCE concentration, with surface area normalized rate constants 2 orders of magnitude greater than those for iron electrodes. Density functional theory (DFT) simulations were used to evaluate activation barriers for reduction by direct electron transfer, and for reaction with four functional groups commonly found on BDD surfaces. The DFT calculated activation barrier for direct electron transfer was more than 4 times greater than the experimentally measured value of 22 kJ/mol. In contrast, the DFT activation barrier for reaction at a deprotonated hydroxyl site on a tertiary carbon atom (triple bond C-O(-)) of 24 kJ/mol was in close agreement with the experimental value. Both experiments and quantum mechanical simulations support a TCE reduction mechanism that involves chemically adsorbed intermediates.
- Farrell, J. -., Zhang, N., Luo, J., Blowers, P., & Farrell, J. -. (2008). Understanding trichloroethylene chemisorption to iron surfaces using density functional theory. Environmental science & technology, 42(6).More infoThis research investigated the thermodynamic favorability and resulting structures for chemical adsorption of trichloroethylene (TCE) to metallic iron using periodic density functional theory (DFT). Three initial TCE positions having the plane defined by HCC atoms parallel to the iron surface resulted in formation of three different chemisorption complexes between carbon atoms in TCE and the iron surface. The Cl-bridge initial configuration with the HCC plane of TCE perpendicular to the iron surface did not result in C-Fe bond formation. The most energetically favorable complex formed at the C-bridge site where the initial configuration had the C=C bond in TCE at a bridge site between adjacent iron atoms. In the C-bridge complex, one C atom formed two a bonds to different Fe atoms, while the second C atom formed a sigma bond with a second Fe atom. Surface complexation atthe C-bridge site resulted in scission of all three C-Cl bonds and also resulted in a shortening of the C==C bond to a distance intermediate between a double and a triple bond. Initial configurations with the C==C bond adsorbed at top or hollow sites on the iron surface resulted in formation of C-Fe a bonds between a single C and two adjacent Fe atoms, and the scission of only two C==Cl bonds. Bond angles and bond lengths indicated that there were no changes in bond order of the C==C bond for top and hollow adsorption. Chemisorption at the C-bridge site had an activation energy of 49 kJ/mol and an early transition state where all three C-CI bonds were activated. The early transition state and the loss of all three Cl atoms upon chemisorption are consistent with most experimental observations that TCE undergoes complete dechlorination in one interaction with the iron surface. The absence of chemisorption and scission of only two C--Cl bonds at the Cl-bridge site is consistent with experimental observations that trace amounts of chloroacetylene may also be produced from reactions of TCE with iron.
- Farrell, J. -., Mishra, D., & Farrell, J. -. (2005). Evaluation of mixed valent iron oxides as reactive adsorbents for arsenic removal. Environmental science & technology, 39(24).More infoThe objective of this research was to determine if Fe(II)-bearing iron oxides generate ferric hydroxides at sufficient rates for removing low levels of arsenic in packed-bed reactors, while at the same time avoiding excessive oxide production that contributes to bed clogging in oxygenated waters. Column experiments were performed to determine the effectiveness of three media for arsenic removal over a range in empty bed contact times, influent arsenic concentrations, dissolved oxygen (DO) levels, and solution pH values. Corrosion rates of the media as a function of the water composition were determined using batch and electrochemical methods. Rates of arsenic removal were first order in the As(V) concentration and were greater for media with higher corrosion rates. As(V) removal increased with increasing DO levels primarily due to faster oxidation of the Fe2+ released by media corrosion. To obtain measurable amounts of arsenic removal in 15 mM NaCl electrolyte solutions containing 50 microg/L As(V), the rate of Fe2+ released by the media needed to be at least 15 times greater than the As(V) feed rate into the column. In waters containing 30 mg/L of silica and 50 microg/L of As(V), measurable amounts of arsenic removal were obtained only for Fe2+ release rates that were at least 200 times greater than the As(V) feed rate. Although all columns showed losses in hydraulic conductivity overthe course of 90 days of operation, the conductivity values remained high, and the losses could be reversed by backwashing the media. The reaction products produced by the media in domestic tap water had average As-to-Fe ratios that were approximately 25% higher than those for a commercially available adsorbent.
- Farrell, J. -., Mishra, D., & Farrell, J. -. (2005). Understanding nitrate reactions with zerovalent iron using tafel analysis and electrochemical impedance spectroscopy. Environmental science & technology, 39(2).More infoThis study investigated the reaction mechanisms of nitrate (NO3-) with zerovalent iron (ZVI) media under conditions relevantto groundwatertreatment using permeable reactive barriers (PRB). Reaction rates of NO3- with freely corroding and with cathodically or anodically polarized iron wires were measured in batch reactors. Tafel analysis and electrochemical impedance spectroscopy (EIS) were used to investigate the reactions occurring on the iron surfaces. Reduction of NO3- by corroding iron resulted in near stoichiometric production of NO2-, which did not measurably react in the absence of added Fe(II). Increasing NO3- concentrations resulted in increasing corrosion currents. However, EIS and Tafel analyses indicated that there was little direct reduction of NO3- at the ZVI surface, despite the presence of water reduction. This behavior can be attributed to formation of a microporous oxide on the iron surfaces that blocked reduction of NO3- and NO2- but did not block water reduction. This finding is consistent with previous observations that NO3- impedes reduction of organic compounds by ZVI. Nitrite concentrations greater than 4 mM resulted in anodic passivation of the iron, but passivation was not observed with NO3- concentrations as high as 96 mM. This indicates that the passivating oxide preventing NO3- reduction was permeable toward cation migration. Since reaction with Fe(0) can be excluded asthe mechanism for NO3- and NO2- reduction, reaction with Fe(II)-containing oxides coating the iron surface is the most likely reaction mechanism. This suggests that short-term batch tests requiring little turnover of reactive sites on the iron surface may overestimate long-term rates of NO3- removal because the effects of passivation are not apparent in batch tests conducted with high initial Fe(II) to NO3- ratios.
- Farrell, J. -., Zhang, N., Blowers, P., & Farrell, J. -. (2005). Ab initio study of carbon-chlorine bond cleavage in carbon tetrachloride. Environmental science & technology, 39(2).More infoChlorinated solvents in groundwater are known to undergo reductive dechlorination reactions with Fe(ll)-containing minerals and with corroding metals in permeable-barrier treatment systems. This research investigated the effect of the reaction energy on the reaction pathway for C-Cl bond cleavage in carbon tetrachloride (CCl4). Hartree-Fock, density functional theory, and modified complete basis set ab initio methods were used to study adiabatic electron transfer to aqueous-phase CCl4. The potential energies associated with fragmentation of the carbon tetrachloride anion radical (CCl4-) into a trichloromethyl radical (CCl3) and a chloride ion (Cl-) were explored as a function of the carbon-chlorine bond distance during cleavage. The effect of aqueous solvation was investigated using a continuum conductor-like screening model. Solvation significantly lowered the energies of the reaction products, suggesting that dissociative electron transfer was enhanced by solvation. The potential energy curves in an aqueous medium indicate that reductive cleavage undergoes a change from an inner-sphere to an outer-sphere mechanism as the overall energy change for the reaction is increased. The activation energy for the reaction was found to be a linear function of the overall energy change, and the Marcus-Hush model was used to relate experimentally measured activation energies for CCl4 reduction to overall reaction energies. Experimentally measured activation energies for CCl4 reduction by corroding iron correspond to reaction energies that are insufficiently exergonic for promoting the outer-sphere mechanism. This suggests that the different reaction pathways that have been observed for CCl4 reduction by corroding iron arise from different catalytic interactions with the surface, and not from differences in energy of the transferred electrons.
- Farrell, J. -., Zhang, N., Blowers, P., & Farrell, J. -. (2005). Evaluation of density functional theory methods for studying chemisorption of arsenite on ferric hydroxides. Environmental science & technology, 39(13).More infoUnderstanding adsorption of arsenic on ferric hydroxide surfaces is important for predicting the fate of arsenic in the environment and in designing treatment systems for removing arsenic from potable water. This research investigated the binding of arsenite to ferric hydroxide clusters using several density functional theory methods. Comparison of calculated and experimentally measured As-O and As-Fe bond distances indicated that As(III) forms both bidentate and monodentante corner-sharing complexes with Fe(III) octahedra. Edge-sharing As(III) complexes were less energetically favorable and had As-O and As-Fe distances that deviated more from experimentally measured values than corner-sharing complexes. The hydrated bidentate complex was the most energetically favorable in the vacuum phase, while the monodentate complex was most favored in the aqueous phase. Structures optimized using the Harris and Perdew-Wang local functionals were close to both experimental data and structures optimized using the nonlocal Becke-Lee-Yang-Parr (BLYP) functional. Binding energies calculated with the gradient-corrected BLYP functional were only weakly dependent on the method used for geometry optimization. The approach of using low-level structures coupled with higher level single-point energies was found to reduce computational time by 75% with no loss in accuracy of the computed binding energies.
- Farrell, G., McCuskey, R. S., Ito, Y., Robertson, G. R., McCuskey, M. K., Perry, M., & Farrell, G. -. (2004). Hepatic microvascular dysfunction during evolution of dietary steatohepatitis in mice. Hepatology (Baltimore, Md.), 40(2).More infoIn alcoholic steatohepatitis, hepatic microvascular changes have pathogenic significance for hepatocellular function, perisinusoidal fibrosis, and portal hypertension. It is unclear whether similar changes occur in other forms of steatohepatitis. We therefore examined whether hepatic microvascular dysfunction occurs in fibrosing steatohepatitis induced by feeding mice a high-fat methionine- and choline-deficient (MCD) diet. Using in vivo microscopic--as well as histological and electron microscopic--methods, together with measurements of alanine aminotransferase (ALT), lipid content, and oxidative stress, hepatic microvascular structure and function were studied in relation to inflammatory and fibrotic changes during evolution of steatohepatitis. At 3 weeks of MCD diet intake, serum ALT was elevated and hepatic steatosis was pronounced. By 5 weeks, necroinflammatory change was noteworthy, and by 8 weeks perisinusoidal fibrosis was established. Compared with mice receiving the high-fat diet supplemented with methionine and choline (controls), levels of hepatic lipid and lipoperoxides were elevated at 3 weeks and beyond. The numbers of perfused sinusoids were significantly reduced at each time point. Enlarged, fat-laden hepatocytes together with perivascular fibrosis narrowed sinusoidal lumens, making vessels tortuous and impairing sinusoidal perfusion. At 3 and 5 weeks, MCD diet caused significant increases in phagocytic activity of macrophages in centrilobular regions. By 8 weeks, macrophage activity was less striking, but the number of leukocytes adherent to the sinusoidal lining had increased 5-fold compared with controls. In conclusion, these results are consistent with a dysfunctional hepatic microvasculature. Thus, microvascular changes may contribute to progressive liver injury in metabolic and toxic forms of steatohepatitis.
- Farrell, J. -., Wang, J., & Farrell, J. -. (2004). Electrochemical inactivation of triclosan with boron doped diamond film electrodes. Environmental science & technology, 38(19).More infoThis research investigated an electrochemical method for inactivating contaminated stockpiles of the biocidal agent, triclosan. The goal of the electrolysis was to produce products that were amenable to treatment in conventional activated sludge treatment systems. Triclosan oxidation in electrochemical cells with boron doped diamond (BDD) film anodes was investigated in aqueous solutions at a pH value of 12. Chronoamperometry experiments showed that direct oxidation of triclosan occurred at potentials below those for H2O, Cl-, or OH- oxidation. Measurable rates of triclosan oxidation began at potentials above 0.4 V with respect to the standard hydrogen electrode (SHE), while potentials of 0.5, 1.3, and 1.8 V were required to obtain measurable oxidation rates of H2O, Cl-, and OH-, respectively. At anode potentials below 2 V, the dominant electrode reaction involved direct triclosan oxidation, while indirect oxidation was the dominant pathway at higher potentials. However, cyclic voltammetry experiments showed that direct oxidation of triclosan resulted in the formation of a passivating film on the electrode that could only be removed by oxidation at potentials above 3 V. Direct triclosan oxidation showed a very weak potential dependence, suggesting that its oxidation was limited by chemical dependent factors rather than by an outer-sphere electron transfer reaction. Organic triclosan oxidation products consisted primarily of chlorinated acetic acids and chlorinated phenolic compounds. Although the byproducts of triclosan oxidation became increasingly less reactive with increasing electrolysis time, triclosan could be completely oxidized to CO2 at current densities above 2 mA/cm2. Microtox testing indicated that residual triclosan accounted for nearly all the toxicity in the treated water, despite the fact that chlorinated byproduct concentrations were significantly higher than those of triclosan itself.
- Farrell, J. -., Wang, J., Blowers, P., & Farrell, J. -. (2004). Understanding reduction of carbon tetrachloride at nickel surfaces. Environmental science & technology, 38(5).More infoNickel has been found to be an effective cathode material and catalyst for reductive destruction of chlorinated solvents in contaminated water. This study investigated reductive dechlorination of carbon tetrachloride (CT) at a nickel rotating disk electrode using chronoamperometry and electrochemical impedance spectroscopy. Chronoamperometry experiments were performed to determine rates of CT reduction as a function of the electrode potential, pH, CT concentration, and temperature. The reaction products of CT dechlorination were 95 +/- 4% methane and 4.1 +/- 2.5% chloroform. Only trace levels of methylene chloride and chloromethane were produced, indicating that sequential hydrogenolysis was not the predominant pathway for methane production. Electrochemical impedance spectroscopy showed that the rate-limiting step for methane production was the transfer of the first electron to a physically adsorbed CT molecule. The temperature independence of the electron transfer coefficient and the decreasing activation energy with decreasing electrode potential indicated that the rate-limiting step involved an outer-sphere electron transfer. At neutral pH values, oxides inactivated much of the electrode surface for both CT reduction and hydrogen evolution. At lower pH values, oxide dissolution served to increase the electroactive surface area of the disk electrode. Anson analysis and kinetic modeling showed that CT adsorption to electroactive sites was a nonlinear function of the CT concentration and was in equilibrium with the bulk solution. CT dechlorination rates on nickel electrodes were 16 times slower than those on iron electrodes under similar conditions. However, CT reactions at nickel surfaces produced predominantly methane as the first detectable product, while reduction at iron surfaces produced chloroform. These results suggest that, although nickel is not a catalyst for the rate-limiting step for CT dechlorination, it may serve a catalytic role in subsequent reaction steps.
- Farrell, J. -., Luo, J., & Farrell, J. -. (2003). Examination of hydrophobic contaminant adsorption in mineral micropores with grand canonical Monte Carlo simulations. Environmental science & technology, 37(9).More infoA molecular level understanding of the interactions between hydrophobic organic contaminants (HOCs) and sediments is needed in order to assess contaminant fate in the environment. Grand canonical Monte Carlo simulations were performed to investigate water and trichloroethylene (TCE) adsorption in slit micropores confined by charged and uncharged silica surfaces. Gas-phase single-sorbate simulations with water or TCE were performed as well as mixture simulations of bulk water containing TCE at 1% of its saturation concentration. Gas-phase isosteric heats for water adsorption in the uncharged pores ranged from -40 to -52 kJ/mol, and the densities of the adsorbed water phases were always less than that for bulk water. Gas-phase isosteric heats for water adsorption in the charged pores ranged from -79 to -170 kJ/mol, and the densities of the adsorbed water phases were close to that for bulk water. The isosteric heats and water densities indicated that the uncharged pores were mildly hydrophobic, and the charged pores were very hydrophilic. In mixture simulations of adsorption from solution, the presence of water promoted TCE adsorption in uncharged pores with widths between 14 and 20 A. The isosteric heats for TCE adsorption from solution ranged from -14 to -27 kJ/mol in the uncharged pores and from -9.3 to -50 kJ/mol in the charged pores. Strong attractions to the pore surfaces were significantly diminished after adsorption of the first two monolayers of either adsorbate. Aqueous-phase TCE at a concentration equal to 1% of its saturation concentration was able to completely displace adsorbed water in uncharged pores. Even in highly hydrophilic pores, TCE at this concentration was able to displace up to 50% of the adsorbed water. Apparent differential enthalpies of adsorption determined from the temperature dependence of TCE adsorption isotherms underestimated the magnitude of the true isosteric heats of adsorption by up to 30 kJ/mol. This shows that HOC adsorption enthalpies determined from the temperature dependence of their adsorption isotherms underestimate the true strength of HOC-adsorbent interactions.
- Farrell, J. -., Wang, J., & Farrell, J. -. (2003). Investigating the role of atomic hydrogen on chloroethene reactions with iron using tafel analysis and electrochemical impedance spectroscopy. Environmental science & technology, 37(17).More infoMetallic iron filings are commonly employed as reducing agents in permeable barriers used for remediating groundwater contaminated by chlorinated solvents. Reactions of trichloroethylene (TCE) and tetrachloroethylene (PCE) with zerovalent iron were investigated to determine the role of atomic hydrogen in their reductive dechlorination. Experiments simultaneously measuring dechlorination and iron corrosion rates were performed to determine the fractions of the total current going toward dechlorination and hydrogen evolution. Corrosion rates were determined using Tafel analysis, and dechlorination rates were determined from rates of byproduct generation. Electrochemical impedance spectroscopy (EIS) was used to determine the number of reactions that controlled the observed rates of chlorocarbon disappearance, as well as the role of atomic hydrogen in TCE and PCE reduction. Comparison of iron corrosion rates with those for TCE reaction showed that TCE reduction occurred almost exclusively via atomic hydrogen at low pH values and via atomic hydrogen and direct electron transfer at neutral pH values. In contrast, reduction of PCE occurred primarily via direct electron transfer at both low and neutral pH values. At low pH values and micromolar concentrations, TCE reaction rates were faster than those for PCE due to more rapid reduction of TCE by atomic hydrogen. At neutral pH values and millimolar concentrations, PCE reaction rates were faster than those for TCE. This shift in relative reaction rates was attributed to a decreasing contribution of the atomic hydrogen reaction mechanism with increasing halocarbon concentrations and pH values. The EIS data showed that all the rate limitations for TCE and PCE dechlorination occurred during the transfer of the first two electrons. Results from this study show that differences in relative reaction rates of TCE and PCE with iron are dependent on the significance of the reduction pathway involving atomic hydrogen.
- Farrell, J. -., Melitas, N., & Farrell, J. -. (2002). Understanding chromate reaction kinetics with corroding iron media using Tafel analysis and electrochemical impedance spectroscopy. Environmental science & technology, 36(24).More infoThe kinetics of chromate removal from contaminated water by zerovalent iron media are not well understood. This study investigated the reactions occurring on iron surfaces in chromate solutions in order to understand the removal kinetics and to assess the long-term ability of zerovalent iron for removing Cr(VI) from contaminated water. Tafel polarization analysis and electrochemical impedance spectroscopy were used to determine the corrosion rates and charge-transfer resistances associated with Cr(VI) removal by iron wires suspended in electrolyte solutions with initial Cr(VI) concentrations of 10,000 microg/L. The condition of the iron surfaces at the time of their exposure to chromate determined the effectiveness of the iron for chromate removal. Both iron coated with a water-formed oxide and initially oxide-free iron were effective for chromate removal. However, iron coated with an air-formed oxide was an order of magnitude less effective for removing soluble chromium. Although iron with the air-formed oxide was largely passivated with respect to chromate removal, its overall rate of corrosion was similar to that for iron with the other initial surface conditions. This indicates that water, but not chromate, was able to penetrate the air-formed oxide coating and access cathodic sites. For all initial surface conditions, addition of chromate decreased the corrosion rate by increasing the corrosion potential and the anodic charge transfer resistance. Although Cr(VI) is a strong oxidant rates of iron corrosion were not proportional to the aqueous Cr(VI) concentrations due to anodic control of iron corrosion. Under anodically controlled conditions, the rate of corrosion was limited by the rate at which Fe2+ could be released at anodic sites and not by the rate at which oxidants were able to accept electrons. This study shows that the zero order removal kinetics of Cr(VI) by iron media can be explained by anodic control of iron corrosion and the concomitant anodic control of Cr(VI) reduction.
- Farrell, J. -., Melitas, N., Conklin, M., & Farrell, J. -. (2002). Electrochemical study of arsenate and water reduction on iron media used for arsenic removal from potable water. Environmental science & technology, 36(14).More infoZerovalent iron filings have been proposed as a filter medium for removing As(III) and As(V) compounds from potable water. The removal mechanism involves complex formation of arsenite and arsenate with the iron surface and with iron oxides produced from iron corrosion. There is conflicting evidence in the literature on whether As(V) can be reduced to As(III) by iron filter media. This research uses electrochemical methods to investigate the redox reactions that occur on the surface of zerovalent iron in arsenic solutions. The effect of arsenic on the corrosion rate of zerovalent iron was investigated by analysis of Tafel diagrams for iron wire electrodes in anaerobic solutions with As(V) concentrations between 100 and 20,000 microg/L. As(V) reduction in the absence of surface oxides was investigated by analysis of chronoamperometry profiles for iron wire electrodes in solutions with As(V) concentrations ranging from 10000 to 106 microg/L. The effect of pH on As(V) reduction was investigated by analyses of chronopotentiometry profiles for iron wire electrodes at pH values of 2, 6.5, and 11. For freely corroding iron, the presence of As(III) and As(V) decreased the iron corrosion rate by a factor of 5 as compared to that in a 3 mM CaSO4 blank electrolyte solution. The decrease in corrosion rate was independent of the arsenic concentration and was due to the blocking of cathodic sites for water reduction by arsenic compounds chemisorbed to the iron surface. The chronoamperometry and chronopotentiometry experiments showed that elevated pH and increased As(III) to As(V) ratios near the iron surface decreased the thermodynamic favorability for As(V) reduction. Therefore, reduction of As(V) occurred only at potentials that were significantly below the apparent equilibrium potentials based on bulk solution pH values and As(III) to As(V) ratios. The potentials required to reduce more than 1% of the As(V) to As(III) were below those that are obtainable in freely corroding iron media. This indicates that there will be minimal or no reduction of As(V) in iron media filters under conditions relevant to potable water treatment.
- Farrell, J. -., Melitas, N., Wang, J., Conklin, M., O'Day, P., & Farrell, J. -. (2002). Understanding soluble arsenate removal kinetics by zerovalent iron media. Environmental science & technology, 36(9).More infoZerovalent iron filings have been proposed as a filter medium for removing arsenic compounds from potable water supplies. This research investigated the kinetics of arsenate removal from aqueous solutions by zerovalent iron media. Batch experiments were performed to determine the effect of the iron corrosion rate on the rate of As(V) removal. Tafel analyses were used to determine the effect of the As(V) concentration on the rate of iron corrosion in anaerobic solutions. As(V) removal in column reactors packed with iron filings was measured over a 1-year period of continuous operation. Comparison of As(V) removal by freely corroding and cathodically protected iron showed that rates of arsenate removal were dependent on the continuous generation of iron oxide adsorption sites. In addition to adsorption site availability, rates of arsenate removal were also limited by mass transfer associated with As(V) diffusion through iron corrosion products. Steady-state removal rates in the column reactor were up to 10 times faster between the inlet-end and the first sampling port than between the first sampling port and the effluent-end of the column. Faster removal near the influent-end of the column was due to a faster rate of iron oxidation in that region. The presence of 100 microg/L As(V) decreased the iron corrosion rate by up to a factor of 5 compared to a blank electrolyte solution. However, increasing the As(V) concentration from 100 to 20,000 microg/L resulted in no further decrease in the iron corrosion rate. The kinetics of arsenate removal ranged between zeroth- and first-order with respect to the aqueous As(V) concentration. The apparent reaction order was dependent on the availability of adsorption sites and on the aqueous As(V) concentration. X-ray absorption spectroscopy analyses showed the presence of iron metal, magnetite (Fe3O4), an Fe(III) oxide phase, and possibly an Fe(II,III) hydroxide phase in the reacted iron filings. These mixed valent oxide phases are not passivating and permit sustained iron corrosion and continuous generation of new sites for As(V) adsorption.
- Farrell, G., Li, T., & Farrell, G. -. (2001). Electrochemical investigation of the rate-limiting mechanisms for trichloroethylene and carbon tetrachloride reduction at iron surfaces. Environmental science & technology, 35(17).More infoThe mechanisms involved in reductive dechlorination of carbon tetrachloride (CT) and trichloroethylene (TCE) at iron surfaces were studied to determine if their reaction rates were limited by rates of electron transfer. Chronoamperometry and chronopotentiometry analyses were used to determine the kinetics of CT and TCE reduction by a rotating disk electrode in solutions of constant halocarbon concentration. Rate constants for CT and TCE dechlorination were measured as a function of the electrode potential over a temperature range from 2 to 42 degrees C. Changes in dechlorination rate constants with electrode potential were used to determine the apparent electron-transfer coefficients at each temperature. The transfer coefficient for CT dechlorination was 0.22 +/- 0.02 and was independent of temperature. The temperature independence of the CT transfer coefficient is consistent with a rate-limiting mechanism involving an outer-sphere electron-transfer step. Conversely, the transfer coefficient for TCE was temperature dependent and ranged from 0.06 +/- 0.01 at 2 degrees C to 0.21 +/- 0.02 at 42 degrees C. The temperature-dependent TCE transfer coefficient indicated that its reduction rate was limited by chemical dependent factors and not exclusively by the rate of electron transfer. In accord with a rate-limiting mechanism involving an electron-transfer step, the apparent activation energy (Ea) for CT reduction decreased with decreasing electrode potential and ranged from 33.0 +/- 1.6 to 47.8 +/- 2.0 kJ/mol. In contrast, the Ea for TCE reduction did not decline with decreasing electrode potential and ranged from 29.4 +/- 3.4 to 40.3 +/- 3.9. The absence of a potential dependence for the TCE Ea supports the conclusion that its reaction rate was not limited by an electron-transfer step. The small potential dependence of TCE reaction rates can be explained by a reaction mechanism in which TCE reacts with atomic hydrogen produced from reduction of water.
- Farrell, G., Melitas, N., Chuffe-Moscoso, O., & Farrell, G. -. (2001). Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects. Environmental science & technology, 35(19).More infoPermeable reactive barriers containing zerovalent iron are being increasingly employed for in situ remediation of groundwater contaminated with redox active metals and chlorinated organic compounds. This research investigated the effect of chromate concentration on its removal from solution by zerovalent iron. Removal rates of aqueous Cr(VI) by iron wires were measured in batch experiments for initial chromium concentrations ranging from 100 to 10 000 microg/L. Chromate removal was also measured in columns packed with zerovalent iron filings over this same concentration range. Electrochemical measurements were made to determine the free corrosion potential and corrosion rate of the iron reactants. In both the batch and column reactors, absolute rates of chromium removal declined with increasing chromate concentration. Corrosion current measurements indicated that the rate of iron corrosion decreased with increasing Cr(VI) concentrations between 0 and 5000 microg/L. At a Cr(VI) concentration of 10 000 microg/L, Tafel polarization diagrams showed that chromium removal was affected by its diffusion rate through a passivating oxide film and by the ability of iron to release Fe2+ at anodic sites. In contrast, water reduction was not mass transfer limited, but chromium did decrease the exchange current for the hydrogen evolution reaction. Even at the most passivating concentration of 10 000 microng/L, effluent Cr(VI) concentrations in the column reactors reached a steady state, indicating that passivation had also reached a steady state. Although chromate contributes to iron surface passivation, the removal rates are still sufficiently fast for in situ iron barriers to be effective for Cr(VI) removal at most environmentally relevant concentrations.