Jump to navigation

The University of Arizona Wordmark Line Logo White
UA Profiles | Home
  • Phonebook
  • Edit My Profile
  • Feedback

Profiles search form

Marat Latypov

  • Assistant Professor, Materials Science and Engineering
  • Member of the Graduate Faculty
  • Assistant Professor, Applied Mathematics - GIDP
Contact
  • (520) 621-6070
  • Mines And Metallurgy, Rm. 141
  • Tucson, AZ 85721
  • latmarat@arizona.edu
  • Bio
  • Interests
  • Courses
  • Scholarly Contributions

Bio

No activities entered.

Related Links

Share Profile

Interests

No activities entered.

Courses

2025-26 Courses

  • Dissertation
    APPL 920 (Fall 2025)
  • Phys-informed machine learning
    APPL 527 (Fall 2025)
  • Phys-informed machine learning
    MSE 527 (Fall 2025)

2024-25 Courses

  • Dissertation
    APPL 920 (Spring 2025)
  • Dissertation
    MSE 920 (Spring 2025)
  • Kinetic Process Mat Sci
    MSE 572 (Spring 2025)
  • Research
    MSE 900 (Spring 2025)
  • Thesis
    MSE 910 (Spring 2025)
  • APPL Research
    APPL 900 (Fall 2024)
  • Dissertation
    MSE 920 (Fall 2024)
  • Independent Study
    MSE 499 (Fall 2024)
  • Materials
    MSE 595A (Fall 2024)
  • Phys-informed machine learning
    APPL 527 (Fall 2024)
  • Phys-informed machine learning
    MSE 527 (Fall 2024)
  • Research
    MSE 900 (Fall 2024)
  • Thesis
    MSE 910 (Fall 2024)

2023-24 Courses

  • Internship
    MSE 693 (Summer I 2024)
  • Dissertation
    MSE 920 (Spring 2024)
  • Kinetic Process Mat Sci
    MSE 572 (Spring 2024)
  • Research
    MSE 900 (Spring 2024)
  • Dissertation
    MSE 920 (Fall 2023)
  • Internship
    MSE 493 (Fall 2023)
  • Phys-informed machine learning
    APPL 527 (Fall 2023)
  • Phys-informed machine learning
    MSE 527 (Fall 2023)
  • Research
    MSE 900 (Fall 2023)

2022-23 Courses

  • Dissertation
    MSE 920 (Spring 2023)
  • Thermodynamics
    MSE 345 (Spring 2023)
  • Independent Study
    MSE 599 (Fall 2022)
  • Research
    MSE 900 (Fall 2022)
  • Spec Tops Mat Sci+Eng
    MSE 596A (Fall 2022)

2021-22 Courses

  • Kinetic Process Mat Sci
    MSE 572 (Spring 2022)
  • Research
    MSE 900 (Spring 2022)
  • Research
    MSE 900 (Fall 2021)

Related Links

UA Course Catalog

Scholarly Contributions

Journals/Publications

  • Hestroffer, J. M., Charpagne, M., Latypov, M. I., & Beyerlein, I. J. (2023). Graph neural networks for efficient learning of mechanical properties of polycrystals. Computational Materials Science, 217, 111894.
  • Muralidharan, K., Latypov, M., Frantziskonis, G. N., & Nikravesh, Y. (2023). Atomistic characterization of impact bonding in cold spray deposition of copper. Materialia, 26(101736), 11. doi:https://doi.org/10.1016/j.mtla.2023.101736
  • Hu, G., & Latypov, M. (2022). Learning from 2D: Machine learning of 3D effective properties of heterogeneous materials based on 2D microstructure sections. Frontiers in Metals and Alloys, 1-9.
  • Pfeiffer, O. P., Liu, H., Montanelli, L., Latypov, M. I., Sen, F. G., Hegadekatte, V., Olivetti, E. A., & Homer, E. R. (2022). Aluminum alloy compositions and properties extracted from a corpus of scientific manuscripts and US patents. Scientific Data, 9(1), 128.
  • Foley, D. L., Latypov, M. I., Zhao, X., Hestroffer, J., Beyerlein, I. J., Lamberson, L. E., & Taheri, M. L. (2022). Geometrically necessary dislocation density evolution as a function of microstructure and strain rate. Materials Science and Engineering: A, 831, 142224.
  • Sahoo, S. K., Toth, L. S., Molinari, A., Latypov, M. I., & Bouaziz, O. (2022). Plastic energy-based analytical approach to predict the mechanical response of two-phase materials with application to dual-phase steels. European Journal of Mechanics-A/Solids, 91, 104414.

Presentations

  • Latypov, M. (2022). "Learning from 2D: Data-driven Model Predicting Bulk Properties Based on 2D Microstructure Sections. TMS 2022. Anaheim, CA.
  • Latypov, M. (2022). Machine learning mechanical properties in relation to heterogeneous mesoscale microstructure. Los Alamos - Arizona Days 2022. Los Alamos, NM.
  • Latypov, M., & Hu, G. (2022). Invited: Learning from 2D—Machine Learning Models for Effective Properties of Heterogeneous Materials Based on 2D Microstructure Sections . MRS Fall Meeting. Boston, MA.

Profiles With Related Publications

  • George N Frantziskonis
  • Krishna Muralidharan

 Edit my profile

UA Profiles | Home

University Information Security and Privacy

© 2025 The Arizona Board of Regents on behalf of The University of Arizona.