Maria A Rendon
- Research Assistant Scientist
Contact
- (520) 626-2661
- TW Keating Bioresearch Bldg., Rm. 200B2
- Tucson, AZ 85721
- maryrend@arizona.edu
Degrees
- Ph.D.
- University of Arizona, Tucson, Arizona, United States
Work Experience
- University of Arizona, Tucson, Arizona (2008 - 2009)
Interests
No activities entered.
Courses
No activities entered.
Scholarly Contributions
Journals/Publications
- Kim, W. J., Higashi, D., Goytia, M., Rendón, M. A., Pilligua-Lucas, M., Bronnimann, M., McLean, J. A., Duncan, J., Trees, D., Jerse, A. E., & So, M. (2019). Commensal Neisseria Kill Neisseria gonorrhoeae through a DNA-Dependent Mechanism. Cell host & microbe, 26(2), 228-239.e8.More infoThe mucosa is colonized with commensal Neisseria. Some of these niches are sites of infection for the STD pathogen Neisseria gonorrhoeae (Ngo). Given the antagonistic behavior of commensal bacteria toward their pathogenic relatives, we hypothesized that commensal Neisseria may negatively affect Ngo colonization. Here, we report that commensal species of Neisseria kill Ngo through a mechanism based on genetic competence and DNA methylation state. Specifically, commensal-triggered killing occurs when the pathogen takes up commensal DNA containing a methylation pattern that it does not recognize. Indeed, any DNA will kill Ngo if it can enter the cell, is differentially methylated, and has homology to the pathogen genome. Consistent with these findings, commensal Neisseria elongata accelerates Ngo clearance from the mouse in a DNA-uptake-dependent manner. Collectively, we propose that commensal Neisseria antagonizes Ngo infection through a DNA-mediated mechanism and that DNA is a potential microbicide against this highly drug-resistant pathogen.
- Kim, W. J., Mai, A., Weyand, N. J., Rendón, M. A., Van Doorslaer, K., & So, M. (2019). Neisseria gonorrhoeae evades autophagic killing by downregulating CD46-cyt1 and remodeling lysosomes. PLoS pathogens, 15(2), e1007495.More infoThe Gram-negative human pathogen N. gonorrhoeae (Ngo) quickly attaches to epithelial cells, and large numbers of the bacteria remain on the cell surface for prolonged periods. Ngo invades cells but few viable intracellular bacteria are recovered until later stages of infection, leading to the assumption that Ngo is a weak invader. On the cell surface, Ngo quickly recruits CD46-cyt1 to the epithelial cell cortex directly beneath the bacteria and causes its cleavage by metalloproteinases and Presenilin/γSecretease; how these interactions affect the Ngo lifecycle is unknown. Here, we show Ngo induces an autophagic response in the epithelial cell through CD46-cyt1/GOPC, and this response kills early invaders. Throughout infection, the pathogen slowly downregulates CD46-cyt1 and remodeling of lysosomes, another key autophagy component, and these activities ultimately promote intracellular survival. We present a model on the dynamics of Ngo infection and describe how this dual interference with the autophagic pathway allows late invaders to survive within the cell.
- Rendón, M. A., Lona, B., Ma, M., & So, M. (2019). RpoN and the Nps and Npa two-component regulatory system control pilE transcription in commensal Neisseria. MicrobiologyOpen, 8(5), e00713.More infoOver 20 genes are involved in the biogenesis and function of the Neisseria Type IV pilus (Tfp). In the pathogenic species, RpoD and the integration host factor (IHF) protein regulate expression of pilE, encoding the Tfp structural subunit. We previously reported that in commensal species, pilE transcription is regulated by RpoN, IHF, and activator Npa. Npa has many hallmarks of response regulators in two-component regulatory systems, leading us to search for its response regulator partner. We report that Npa partners with sensor kinase Nps to control pilE transcription. Among the genes involved in Tfp biogenesis and function, only pilE is controlled by RpoN and Npa/Nps. We summarize our findings in a model, and discuss the implications of the differential regulation of pilE the context of Neisseria Tfp biogenesis.
- So, M., & Rendón, M. A. (2019). Tribal warfare: Commensal kill pathogen using its DNA. Microbial cell (Graz, Austria), 6(12), 544-546.More infoIt is now abundantly clear that our microbiota (commensals) are critical for many physiological and developmental processes. They have also been shown to inhibit pathogen colonization, through a variety of means including nutrient competition and secretion of microbicidal or biofilm-inhibiting proteins/peptides. Our recent study, Kim (2019), adds a new dimension to the concept of commensal protection. It shows that commensal kill the closely related pathogen through an unexpected mechanism, one that involves genetic competence, DNA methylation state and recombination. This microreview summarizes the report and discusses questions and lines of research arising from the study. Further investigation into this DNA-based killing mechanism will provide a better understanding of biology and commensal-pathogen interactions on the mucosa, and identify strategies for preventing pathogenic transmission.
- Ma, M., Powell, D. A., Weyand, N. J., Rhodes, K. A., Rendón, M. A., Frelinger, J. A., & So, M. (2018). A Natural Mouse Model for Neisseria Colonization. Infection and immunity, 86(5).More infoCommensals are important for the proper functioning of multicellular organisms. How a commensal establishes persistent colonization of its host is little understood. Studies of this aspect of microbe-host interactions are impeded by the absence of an animal model. We have developed a natural small animal model for identifying host and commensal determinants of colonization and of the elusive process of persistence. Our system couples a commensal bacterium of wild mice, , with the laboratory mouse. The pairing of a mouse commensal with its natural host circumvents issues of host restriction. Studies are performed in the absence of antibiotics, hormones, invasive procedures, or genetic manipulation of the host. A single dose of , administered orally, leads to long-term colonization of the oral cavity and gut. All mice are healthy. Susceptibility to colonization is determined by host genetics and innate immunity. For , colonization requires the type IV pilus. Reagents and powerful tools are readily available for manipulating the laboratory mouse, allowing easy dissection of host determinants controlling colonization resistance. is genetically related to human-dwelling commensal and pathogenic and encodes host interaction factors and vaccine antigens of pathogenic Our system provides a natural approach for studying -host interactions and is potentially useful for vaccine efficacy studies.
- Weyand, N. J., Ma, M., Phifer-Rixey, M., Taku, N. A., Rendón, M. A., Hockenberry, A. M., Kim, W. J., Agellon, A. B., Biais, N., Suzuki, T. A., Goodyer-Sait, L., Harrison, O. B., Bratcher, H. B., Nachman, M. W., Maiden, M. C., & So, M. (2016). Isolation and characterization of Neisseria musculi sp. nov., from the wild house mouse. International journal of systematic and evolutionary microbiology, 66(9), 3585-3593.More infoMembers of the genus Neisseria have been isolated from or detected in a wide range of animals, from non-human primates and felids to a rodent, the guinea pig. By means of selective culture, biochemical testing, Gram staining and PCR screening for the Neisseria-specific internal transcribed spacer region of the rRNA operon, we isolated four strains of the genus Neisseria from the oral cavity of the wild house mouse, Mus musculus subsp. domesticus. The isolates are highly related and form a separate clade in the genus, as judged by tree analyses using either multi-locus sequence typing of ribosomal genes or core genes. One isolate, provisionally named Neisseria musculi sp. nov. (type strain AP2031T=DSM 101846T=CCUG 68283T=LMG 29261T), was studied further. Strain AP2031T/N. musculi grew well in vitro. It was naturally competent, taking up DNA in a DNA uptake sequence and pilT-dependent manner, and was amenable to genetic manipulation. These and other genomic attributes of N. musculi sp. nov. make it an ideal candidate for use in developing a mouse model for studying Neisseria-host interactions.
- Rendón, M. A., Hockenberry, A. M., McManus, S. A., & So, M. (2013). Sigma factor RpoN (σ54) regulates pilE transcription in commensal Neisseria elongata. Molecular microbiology, 90(1), 103-13.More infoHuman-adapted Neisseria includes two pathogens, Neisseria gonorrhoeae and Neisseria meningitidis, and at least 13 species of commensals that colonize many of the same niches as the pathogens. The Type IV pilus plays an important role in the biology of pathogenic Neisseria. In these species, Sigma factor RpoD (σ(70)), Integration Host Factor, and repressors RegF and CrgA regulate transcription of pilE, the gene encoding the pilus structural subunit. The Type IV pilus is also a strictly conserved trait in commensal Neisseria. We present evidence that a different mechanism regulates pilE transcription in commensals. Using Neisseria elongata as a model, we show that Sigma factor RpoN (σ(54)), Integration Host Factor, and an activator we name Npa regulate pilE transcription. Taken in context with previous reports, our findings indicate pilE regulation switched from an RpoN- to an RpoD-dependent mechanism as pathogenic Neisseria diverged from commensals during evolution. Our findings have implications for the timing of Tfp expression and Tfp-mediated host cell interactions in these two groups of bacteria.
- Marri, P. R., Paniscus, M., Weyand, N. J., Rendón, M. A., Calton, C. M., Hernández, D. R., Higashi, D. L., Sodergren, E., Weinstock, G. M., Rounsley, S. D., & So, M. (2010). Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PloS one, 5(7), e11835.More infoCommensal bacteria comprise a large part of the microbial world, playing important roles in human development, health and disease. However, little is known about the genomic content of commensals or how related they are to their pathogenic counterparts. The genus Neisseria, containing both commensal and pathogenic species, provides an excellent opportunity to study these issues. We undertook a comprehensive sequencing and analysis of human commensal and pathogenic Neisseria genomes. Commensals have an extensive repertoire of virulence alleles, a large fraction of which has been exchanged among Neisseria species. Commensals also have the genetic capacity to donate DNA to, and take up DNA from, other Neisseria. Our findings strongly suggest that commensal Neisseria serve as reservoirs of virulence alleles, and that they engage extensively in genetic exchange.
- Rendón, M. A., Saldaña, Z., Erdem, A. L., Monteiro-Neto, V., Vázquez, A., Kaper, J. B., Puente, J. L., & Girón, J. A. (2007). Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proceedings of the National Academy of Sciences of the United States of America, 104(25), 10637-42.More infoEnterohemorrhagic Escherichia coli (EHEC) O157:H7 is a food-borne pathogen that causes hemorrhagic colitis and the hemolytic uremic syndrome. Colonization of the human gut mucosa and production of potent Shiga toxins are critical virulence traits of EHEC. Although EHEC O157:H7 contains numerous putative pili operons, their role in the colonization of the natural bovine or accidental human hosts remains largely unknown. We have identified in EHEC an adherence factor, herein called E. coli common pilus (ECP), composed of a 21-kDa pilin subunit whose amino acid sequence corresponds to the product of the yagZ (renamed ecpA) gene present in all E. coli genomes sequenced to date. ECP production was demonstrated in 121 (71.6%) of a total of 169 ecpA+ strains representing intestinal and extraintestinal pathogenic as well as normal flora E. coli. High-resolution ultrastructural and immunofluorescence studies demonstrated the presence of abundant peritrichous fibrillar structures emanating from the bacterial surface forming physical bridges between bacteria adhering to cultured epithelial cells. Isogenic ecpA mutants of EHEC O157:H7 or fecal commensal E. coli showed significant reduction in adherence to cultured epithelial cells. Our data suggest that ECP production is a common feature of E. coli colonizing the human gut or other host tissues. ECP is a pilus of EHEC O157:H7 with a potential role in host epithelial cell colonization and may represent a mechanism of adherence of both pathogenic and commensal E. coli.
- Castañeda-Roldán, E. I., Ouahrani-Bettache, S., Saldaña, Z., Avelino, F., Rendón, M. A., Dornand, J., & Girón, J. A. (2006). Characterization of SP41, a surface protein of Brucella associated with adherence and invasion of host epithelial cells. Cellular microbiology, 8(12), 1877-87.More infoBrucella is an invasive organism that multiplies and survives within eukaryotic cells. The brucellae are able to adhere to the surface of cultured epithelial cells, a mechanism that may facilitate penetration and dissemination to other host tissues. However, no adhesins that allow the bacteria to interact with the surface of epithelial cells before migration within polymorphonuclear leukocytes, monocytes and macrophages have been described. Here, we show that Brucella surface proteins (SPs) with apparent molecular masses of 14, 18 and 41 kDa bound selectively to HeLa cells. However, only antibodies directed against the 41 kDa surface protein (SP41) inhibited in dose-response manner, bacterial adherence and invasion of HeLa cells. HeLa cells treated with neuraminidase did not bind SP41, suggesting the involvement of cellular sialic acid residues in this interaction. Biochemical analysis of SP41 revealed that this protein is the predicted product of the ugpB locus, which showed significant homology to the glycerol-3-phosphate-binding ATP-binding cassette (ABC) transporter protein found in several bacterial species. SP41 appears to be exposed on the bacterial surface as determined by immunofluorescence and immunogold labelling with anti-SP41 antibody. An isogenic DeltaugpB mutant showed a significant inhibitory effect on Brucella adherence and invasion of human cultured epithelial cells and this effect could be reversed by restoration of the ugpB on a plasmid. Lastly, we also show that most of the sera from individuals with acute brucellosis, but not sera obtained from healthy donors or patients with chronic brucellosis, mount antibody reactivity against SP41, suggesting that this protein is produced in vivo and that it elicits an antibody immune response. These data are novel findings that offer new insights into understanding the interplay between this bacterium and host target cells, and identify a new target for vaccine development and prevention of brucellosis.
- Xicohtencatl-Cortés, J., Lyons, S., Chaparro, A. P., Hernández, D. R., Saldaña, Z., Ledesma, M. A., Rendón, M. A., Gewirtz, A. T., Klose, K. E., & Girón, J. A. (2006). Identification of proinflammatory flagellin proteins in supernatants of Vibrio cholerae O1 by proteomics analysis. Molecular & cellular proteomics : MCP, 5(12), 2374-83.More infoThe genome of Vibrio cholerae contains five flagellin genes that encode proteins (FlaA-E) of 39-41 kDa with 61-82% identity among them. Although the existing live oral attenuated vaccine strains against cholera are protective in humans, there is an intrinsic residual cytotoxic and inflammatory component associated with these candidate vaccine strains. Bacterial flagellins are known to be potent inducers of proinflammatory molecules via activation of Toll-like receptor 5. Here we found that purified flagella from wild type V. cholerae 395 induced significant release of interleukin (IL)-8 from cultured HT-29 human colonic epithelial cells. Furthermore we found that filtered supernatants of KKV90, a DeltaflaA isogenic strain unable to produce flagella, were still able to activate production of IL-8 albeit to significantly lower levels than the wild type, suggesting that other activators of proinflammatory molecules were still present in these supernatants. A comparative proteomics analysis of secreted proteins of V. cholerae 395 and KKV90 identified additional proteins with potential to induce IL-8 release in HT-29 cells. Secreted proteins in the range of 30-45 kDa identified by two-dimensional electrophoresis and mass spectrometry revealed the presence of two additional flagellins, FlaC and FlaD, that appeared to be secreted 3- and 6-fold more, respectively, in the mutant compared with the wild type. Double isogenic mutants flaAC and flaAD were unable to trigger IL-8 release from HT-29 cells. In sum, we have shown that purified flagella and secreted flagellin proteins (FlaC and FlaD) are inducers of IL-8 release from epithelial cells via Toll-like receptor 5. This observation may explain, in part, the observed reactogenicity of cholera vaccine strains in humans.