Hang Xue
- Associate Professor
- Member of the Graduate Faculty
Contact
- (316) 054-
- Environment and Natural Res. 2, Rm. S329
- Tucson, AZ 85719
- xuehang@arizona.edu
Degrees
- Ph.D.
- Columbia University, New York, New York, United States
Work Experience
- The University of Arizona (2016 - Ongoing)
Interests
Research
Number Theory, Automorphic forms, Arithmetic Geometry
Courses
2024-25 Courses
-
Algebra
MATH 511A (Fall 2024) -
Dissertation
MATH 920 (Fall 2024) -
Independent Study
MATH 599 (Fall 2024)
2023-24 Courses
-
Algebraic Number Theory
MATH 514B (Spring 2024) -
Independent Study
MATH 599 (Spring 2024) -
Algebraic Number Theory
MATH 514A (Fall 2023) -
Independent Study
MATH 599 (Fall 2023)
2022-23 Courses
-
Dissertation
MATH 920 (Spring 2023) -
Independent Study
MATH 599 (Spring 2023) -
Tpc Number Theory Comb
MATH 519 (Spring 2023) -
Dissertation
MATH 920 (Fall 2022)
2021-22 Courses
-
Independent Study
MATH 499 (Summer I 2022) -
Algebraic Number Theory
MATH 514B (Spring 2022) -
Calculus II
MATH 129 (Spring 2022) -
Dissertation
MATH 920 (Spring 2022) -
Algebraic Number Theory
MATH 514A (Fall 2021) -
Dissertation
MATH 920 (Fall 2021)
2020-21 Courses
-
Dissertation
MATH 920 (Spring 2021) -
Independent Study
MATH 599 (Spring 2021) -
Intro to Linear Algebra
MATH 313 (Spring 2021) -
Lie Groups+Lie Algebras
MATH 559B (Spring 2021) -
Dissertation
MATH 920 (Fall 2020) -
Independent Study
MATH 599 (Fall 2020) -
Lie Groups+Lie Algebras
MATH 559A (Fall 2020)
2019-20 Courses
-
Algebra
MATH 511B (Spring 2020) -
Dissertation
MATH 920 (Spring 2020) -
Independent Study
MATH 599 (Spring 2020) -
Algebra
MATH 511A (Fall 2019) -
Calculus I
MATH 125 (Fall 2019) -
Independent Study
MATH 599 (Fall 2019) -
Research
MATH 900 (Fall 2019)
2018-19 Courses
-
Tpc Number Theory Comb
MATH 519 (Spring 2019) -
Applied Linear Algebra
MATH 310 (Fall 2018) -
Calculus I
MATH 125 (Fall 2018) -
Independent Study
MATH 599 (Fall 2018)
2017-18 Courses
-
Applied Linear Algebra
MATH 310 (Summer I 2018) -
Intro To Cryptography
MATH 445 (Summer I 2018) -
Algebraic Number Theory
MATH 514B (Spring 2018) -
Independent Study
MATH 599 (Spring 2018) -
Algebraic Number Theory
MATH 514A (Fall 2017)
2016-17 Courses
-
Applied Linear Algebra
MATH 310 (Summer I 2017) -
Intro To Cryptography
MATH 445 (Summer I 2017) -
Tpc Number Theory Comb
MATH 519 (Spring 2017) -
Linear Algebra
MATH 413 (Fall 2016)
Scholarly Contributions
Journals/Publications
- Xue, H. (2023). Bessel models for real unitary groups: the tempered case. Duke Math Journal, 172(5), 995-1031. doi:DOI: 10.1215/00127094-2022-0018
- Xue, H. (2021). Epsilon dichotomy for linear models. Algebra & Number Theory. doi:10.2140/ant.2021.15.173
- Xue, H. (2021). Epsilon dichotomy for linear models. Algebra Number Theory. doi:DOI: 10.2140/ant.2021.15.173
- Xue, H. (2021). Orbital integrals on. Canadian Journal of Mathematics. doi:10.4153/s0008414x21000122
- Xue, H. (2019). Arithmetic theta lifts and arithmetic Gan--Gross--Prasad conjecture for unitary groups. Duke Math Journal.
- Xue, H. (2019). On the global Gan–Gross–Prasad conjecture for unitary groups: Approximating smooth transfer of Jacquet–Rallis. Crelle's Journal, 2019(756), 65-100. doi:10.1515/crelle-2017-0016More infoAbstract Zhang proved the global Gan–Gross–Prasad conjecture for \operatorname{U}(n+1)\times\operatorname{U}(n) under some local conditions [19]. One of the conditions is that the unitary groups are split at the archimedean places. We remove this assumption at the archimedean places in this paper.
- Xue, H. (2019). On the global Gan--Gross--Prasad conjecture for unitary groups: approximating smooth transfer of Jacquet--Rallis. Crelle's Journal.
- Xue, H. (2017). Refined global Gan–Gross–Prasad conjecture for Fourier–Jacobi periods on symplectic groups. Compositio Mathematica. doi:10.1112/s0010437x16007752
- Xue, H. (2017). Refined global Gan--Gross--Prasad conjecture for Fourier--Jacobi periods on symplectic groups. Compositio Mathematica.
- Xue, H. (2018). Fourier–Jacobi periods of classical Saito–Kurokawa lifts. Ramanujan Journal.
- Xue, H. (2016). Fourier–Jacobi periods and the central value of Rankin–Selberg L-functions. Israel Journal of Mathematics. doi:10.1007/s11856-016-1300-2
- Xue, H. (2015). A quadratic point on the Jacobian of the universal genus four curve. Mathematical Research Letters. doi:10.4310/mrl.2015.v22.n5.a13
- Xue, H. (2014). The Gan–Gross–Prasad conjecture forU(n)×U(n). Advances in Mathematics. doi:10.1016/j.aim.2014.06.010More infoWe prove the Gan–Gross–Prasad conjecture for U ( n ) × U ( n ) under some local conditions using a relative trace formula. We deduce some new cases of the Gan–Gross–Prasad conjecture for U ( n + 1 ) × U ( n ) from the case of U ( n ) × U ( n ) .