Xueying Tang
- Assistant Professor, Mathematics
- Member of the Graduate Faculty
Contact
- (520) 621-6892
- Mathematics, Rm. 108
- Tucson, AZ 85721
- xytang@arizona.edu
Awards
- Outstanding Reviewer
- American Educational Research Association and Journal of Educational and Behavioral Statistics, Spring 2021
Interests
No activities entered.
Courses
2024-25 Courses
-
Independent Study
DATA 499 (Spring 2025) -
Adv Stat Regress Analys
MATH 571A (Fall 2024) -
Adv Stat Regress Analys
STAT 571A (Fall 2024) -
Independent Study
DATA 499 (Fall 2024)
2023-24 Courses
-
Dissertation
MATH 920 (Spring 2024) -
Dissertation
STAT 920 (Spring 2024) -
Theory of Statistics
MATH 466 (Spring 2024) -
Theory of Statistics
MATH 566 (Spring 2024) -
Theory of Statistics
STAT 566 (Spring 2024) -
Dissertation
MATH 920 (Fall 2023) -
Dissertation
STAT 920 (Fall 2023) -
Statistical Machine Learning
MATH 574M (Fall 2023)
2022-23 Courses
-
Dissertation
STAT 920 (Spring 2023) -
Honors Thesis
DATA 498H (Spring 2023) -
Theory of Statistics
MATH 466 (Spring 2023) -
Theory of Statistics
MATH 566 (Spring 2023) -
Theory of Statistics
STAT 566 (Spring 2023) -
Dissertation
STAT 920 (Fall 2022) -
Honors Thesis
DATA 498H (Fall 2022) -
Theory of Statistics
MATH 466 (Fall 2022)
2021-22 Courses
-
Independent Study
STAT 599 (Spring 2022) -
Research
STAT 900 (Spring 2022) -
Theory of Statistics
MATH 466 (Spring 2022) -
Theory of Statistics
MATH 566 (Spring 2022) -
Theory of Statistics
STAT 566 (Spring 2022) -
Theory of Statistics
MATH 466 (Fall 2021)
2020-21 Courses
-
Theory of Statistics
MATH 566 (Spring 2021) -
Theory of Statistics
STAT 566 (Spring 2021) -
Adv Stat Regress Analys
MATH 571A (Fall 2020) -
Adv Stat Regress Analys
STAT 571A (Fall 2020) -
Thesis
STAT 910 (Fall 2020)
2019-20 Courses
-
Theory of Statistics
MATH 466 (Spring 2020) -
Theory of Statistics
MATH 466 (Fall 2019)
Scholarly Contributions
Journals/Publications
- Tang, X. (2023). A latent hidden Markov model for response process data. Psychometrika.
- Tang, X., & Ghosh, M. (2023).
Global-Local Priors for Spatial Small Area Estimation
. Calcutta Statistical Association Bulletin. doi:10.1177/00080683231186378 - Tang, X., Wang, Z., Liu, J., & Ying, Z. (2023). Subtask analysis of process data through a predictive model. British Journal of Mathematical and Statistical Psychology, 76(1), 211-235. doi:10.1111/bmsp.12290
- Ghosh, T., Ghosh, M., Maples, J., & Tang, X. (2022). Multivariate global-local priors for small area estimation. Stats, 5(3), 673-688. doi:https://doi.org/10.3390/stats5030040
- Lippitt, W., Lippitt, W., Sethuraman, S., Sethuraman, S., Tang, X., & Tang, X. (2022). Stationarity and Inference in Multistate Promoter Models of Stochastic Gene Expression via Stick-Breaking Measures. SIAM Journal on Applied Mathematics, 82(6), 1953-1986. doi:10.1137/21m1440876
- Tang, X., Wang, Z., Liu, J., & Ying, Z. (2021). An exploratory analysis of the latent structure of process data via action sequence autoencoders. British Journal of Mathematical and Statistical Psychology, 74(1), 1-33. doi:10.1111/bmsp.12203
- Tang, X., Zhang, S., Wang, Z., Liu, J., & Ying, Z. (2021). ProcData: An R Package for Process Data Analysis. Psychometrika.
- Tang, X., Wang, Z., & Liu, J. (2020). Statistical Analysis of Multi-Relational Network Recovery. Frontiers in Applied Mathematics and Statistics.
- Tang, X., Wang, Z., He, Q., Liu, J., & Ying, Z. (2020). Latent feature extraction for process data via multidimensional scaling. Psychometrika.
Presentations
- Tang, X. (2023, April). Modeling Sparsity Using Log-Cauchy Priors. Statistics Seminar at the University of Pittsburgh.
- Tang, X. (2023, August). Adaptive Bayesian Shrinkage of Random Effects in Small Area Estimation. Joint Statistical Meetings. Toronto, Canada.
- Tang, X. (2023, December). Global-Local Priors for Spatial Small Area Estimation. 16th International Conference of the ERCIM WG on Computational and Methodological Statistics.
- Tang, X. (2023, February). A Latent Hidden Markov Model for Response Process Data. Special Interest Group Seminar at ETS.
- Tang, X. (2023, July). A Latent Hidden Markov Model for Response Process Data. International Meeting for Psychometric Society. College Park, Maryland.
- Tang, X. (2023, September). A Latent Hidden Markov Model for Response Process Data. Psychometrics Workshop at Columbia University.
- Tang, X. (2022, April). Modeling sparsity using log Cauchy prior. University of Minnesota Statistics Seminar.
- Tang, X. (2022, April). Subtask analysis of process data through a predictive model. Arizona State University Machine Learning Day.
- Tang, X. (2022, December). Measurement Error Models with Global-Local Random Effects in Small Area Estimation. 15th International Conference of the ERCIM WG on Computational and Methodological Statistics. Online.
- Tang, X. (2022, June). A latent hidden Markov model for response process data. International Chinese Statistician Association Applied Statistics Symposium.
- Tang, X. (2022, October). Modeling sparsity using log-Cauchy prior. Arizona State University Statistical Seminar.
- Tang, X. (2022, October). Modeling sparsity using log-Cauchy prior. University of Cincinnati Statistics Seminar.
- Tang, X. (2021). Using log Cauchy priors for modeling sparsity. 14th International Conference of the ERCIM WG on Computational and Methodological Statistics. Virtual.
- Tang, X. (2021, April). Subtask Analysis of Process Data Through a Predictive Model. The Ohio State University Biostatistics Seminar. Virtual.
- Tang, X. (2021, June). Subtask Analysis of Process Data Through a Predictive Model. University of California Davis Statistics Seminar. Virtual.
- Tang, X. (2021, October). Subtask Analysis of Process Data Through a Predictive Model. 34th New England Statistics Symposium. Virtual.
- Tang, X. (2020, August). Bayesian Semiparametric Regression Model Selection with Correlated Errors. Joint Statistical Meetings.
- Tang, X. (2020, December). Subtask Analysis of Process Data Through a Predictive Model. International Chinese Statistical Association Applied Statistics Symposium.
- Tang, X. (2020, July). A Hidden Markov Model for Identifying Problem Solving Strategies in Process Data. International Meeting of the Psychometric Society.
- Tang, X. (2020, July). Introduction to R package ProcData. Workshop on Statistical Learning for Process Data.