Jump to navigation

The University of Arizona Wordmark Line Logo White
UA Profiles | Home
  • Phonebook
  • Edit My Profile
  • Feedback

Profiles search form

Xueying Tang

  • Assistant Professor, Mathematics
  • Member of the Graduate Faculty
Contact
  • (520) 621-6892
  • Mathematics, Rm. 108
  • Tucson, AZ 85721
  • xytang@arizona.edu
  • Bio
  • Interests
  • Courses
  • Scholarly Contributions

Awards

  • Best Reviewer Award
    • Psychometric Society, Summer 2024
  • Elected to Arizona Alpha Chapter of Mu Sigma Rho (National Honor Society in Statistics)
    • Spring 2024
  • Outstanding Reviewer
    • American Educational Research Association and Journal of Educational and Behavioral Statistics, Spring 2021

Related Links

Share Profile

Interests

No activities entered.

Courses

2025-26 Courses

  • Adv Stat Regress Analys
    MATH 571A (Fall 2025)
  • Adv Stat Regress Analys
    STAT 571A (Fall 2025)

2024-25 Courses

  • Independent Study
    DATA 499 (Spring 2025)
  • Adv Stat Regress Analys
    MATH 571A (Fall 2024)
  • Adv Stat Regress Analys
    STAT 571A (Fall 2024)
  • Independent Study
    DATA 499 (Fall 2024)

2023-24 Courses

  • Dissertation
    MATH 920 (Spring 2024)
  • Dissertation
    STAT 920 (Spring 2024)
  • Theory of Statistics
    MATH 466 (Spring 2024)
  • Theory of Statistics
    MATH 566 (Spring 2024)
  • Theory of Statistics
    STAT 566 (Spring 2024)
  • Dissertation
    MATH 920 (Fall 2023)
  • Dissertation
    STAT 920 (Fall 2023)
  • Statistical Machine Learning
    MATH 574M (Fall 2023)

2022-23 Courses

  • Dissertation
    STAT 920 (Spring 2023)
  • Honors Thesis
    DATA 498H (Spring 2023)
  • Theory of Statistics
    MATH 466 (Spring 2023)
  • Theory of Statistics
    MATH 566 (Spring 2023)
  • Theory of Statistics
    STAT 566 (Spring 2023)
  • Dissertation
    STAT 920 (Fall 2022)
  • Honors Thesis
    DATA 498H (Fall 2022)
  • Theory of Statistics
    MATH 466 (Fall 2022)

2021-22 Courses

  • Independent Study
    STAT 599 (Spring 2022)
  • Research
    STAT 900 (Spring 2022)
  • Theory of Statistics
    MATH 466 (Spring 2022)
  • Theory of Statistics
    MATH 566 (Spring 2022)
  • Theory of Statistics
    STAT 566 (Spring 2022)
  • Theory of Statistics
    MATH 466 (Fall 2021)

2020-21 Courses

  • Theory of Statistics
    MATH 566 (Spring 2021)
  • Theory of Statistics
    STAT 566 (Spring 2021)
  • Adv Stat Regress Analys
    MATH 571A (Fall 2020)
  • Adv Stat Regress Analys
    STAT 571A (Fall 2020)
  • Thesis
    STAT 910 (Fall 2020)

2019-20 Courses

  • Theory of Statistics
    MATH 466 (Spring 2020)
  • Theory of Statistics
    MATH 466 (Fall 2019)

Related Links

UA Course Catalog

Scholarly Contributions

Journals/Publications

  • Zhang, S., Tang, X., Wang, Z., Liu, J., & Ying, Z. (2023). External Correlates of Adult Digital Problem-Solving Process: An Empirical Analysis of PIAAC PSTRE Action Sequences. Zeitschrift fur Psychologie.
  • Tang, X. (2023). A latent hidden Markov model for response process data. Psychometrika.
  • Tang, X., & Ghosh, M. (2023).

    Global-Local Priors for Spatial Small Area Estimation

    . Calcutta Statistical Association Bulletin. doi:10.1177/00080683231186378
  • Tang, X., Wang, Z., Liu, J., & Ying, Z. (2023). Subtask analysis of process data through a predictive model. British Journal of Mathematical and Statistical Psychology, 76(1), 211-235. doi:10.1111/bmsp.12290
  • Ghosh, T., Ghosh, M., Maples, J., & Tang, X. (2022). Multivariate global-local priors for small area estimation. Stats, 5(3), 673-688. doi:https://doi.org/10.3390/stats5030040
  • Lippitt, W., Lippitt, W., Sethuraman, S., Sethuraman, S., Tang, X., & Tang, X. (2022). Stationarity and Inference in Multistate Promoter Models of Stochastic Gene Expression via Stick-Breaking Measures. SIAM Journal on Applied Mathematics, 82(6), 1953-1986. doi:10.1137/21m1440876
  • Tang, X., Wang, Z., Liu, J., & Ying, Z. (2021). An exploratory analysis of the latent structure of process data via action sequence autoencoders. British Journal of Mathematical and Statistical Psychology, 74(1), 1-33. doi:10.1111/bmsp.12203
  • Tang, X., Zhang, S., Wang, Z., Liu, J., & Ying, Z. (2021). ProcData: An R Package for Process Data Analysis. Psychometrika.
  • Tang, X., Wang, Z., & Liu, J. (2020). Statistical Analysis of Multi-Relational Network Recovery. Frontiers in Applied Mathematics and Statistics.
  • Tang, X., Wang, Z., He, Q., Liu, J., & Ying, Z. (2020). Latent feature extraction for process data via multidimensional scaling. Psychometrika.

Presentations

  • Tang, X. (2024, April). A Latent Hidden Markov Model for Process Data. Arizona Data Science Day.
  • Tang, X. (2024, August). Hidden Markov Cognitive Diagnostic Models for Response Process Data. Joint Statistical Meetings.
  • Tang, X. (2024, December).

    A Hierarchical Gamma Prior for Modeling Random Effects in Small Area Estimation.

    . 17th International Conference of ERCIM WG on Computational and Methodological Statistics.
  • Tang, X. (2023, April). Modeling Sparsity Using Log-Cauchy Priors. Statistics Seminar at the University of Pittsburgh.
  • Tang, X. (2023, August). Adaptive Bayesian Shrinkage of Random Effects in Small Area Estimation. Joint Statistical Meetings. Toronto, Canada.
  • Tang, X. (2023, December). Global-Local Priors for Spatial Small Area Estimation. 16th International Conference of the ERCIM WG on Computational and Methodological Statistics.
  • Tang, X. (2023, February). A Latent Hidden Markov Model for Response Process Data. Special Interest Group Seminar at ETS.
  • Tang, X. (2023, July). A Latent Hidden Markov Model for Response Process Data. International Meeting for Psychometric Society. College Park, Maryland.
  • Tang, X. (2023, September). A Latent Hidden Markov Model for Response Process Data. Psychometrics Workshop at Columbia University.
  • Tang, X. (2022, April). Modeling sparsity using log Cauchy prior. University of Minnesota Statistics Seminar.
  • Tang, X. (2022, April). Subtask analysis of process data through a predictive model. Arizona State University Machine Learning Day.
  • Tang, X. (2022, December). Measurement Error Models with Global-Local Random Effects in Small Area Estimation. 15th International Conference of the ERCIM WG on Computational and Methodological Statistics. Online.
  • Tang, X. (2022, June). A latent hidden Markov model for response process data. International Chinese Statistician Association Applied Statistics Symposium.
  • Tang, X. (2022, October). Modeling sparsity using log-Cauchy prior. Arizona State University Statistical Seminar.
  • Tang, X. (2022, October). Modeling sparsity using log-Cauchy prior. University of Cincinnati Statistics Seminar.
  • Tang, X. (2021). Using log Cauchy priors for modeling sparsity. 14th International Conference of the ERCIM WG on Computational and Methodological Statistics. Virtual.
  • Tang, X. (2021, April). Subtask Analysis of Process Data Through a Predictive Model. The Ohio State University Biostatistics Seminar. Virtual.
  • Tang, X. (2021, June). Subtask Analysis of Process Data Through a Predictive Model. University of California Davis Statistics Seminar. Virtual.
  • Tang, X. (2021, October). Subtask Analysis of Process Data Through a Predictive Model. 34th New England Statistics Symposium. Virtual.
  • Tang, X. (2020, August). Bayesian Semiparametric Regression Model Selection with Correlated Errors. Joint Statistical Meetings.
  • Tang, X. (2020, December). Subtask Analysis of Process Data Through a Predictive Model. International Chinese Statistical Association Applied Statistics Symposium.
  • Tang, X. (2020, July). A Hidden Markov Model for Identifying Problem Solving Strategies in Process Data. International Meeting of the Psychometric Society.
  • Tang, X. (2020, July). Introduction to R package ProcData. Workshop on Statistical Learning for Process Data.

Profiles With Related Publications

  • Sunder Sethuraman

 Edit my profile

UA Profiles | Home

University Information Security and Privacy

© 2025 The Arizona Board of Regents on behalf of The University of Arizona.