J. Serena Kim
- Research Professor, Steward Observatory
- Member of the Graduate Faculty
Contact
- (520) 626-0187
- Steward Observatory, Rm. N208
- Tucson, AZ 85721
- serena00@arizona.edu
Degrees
- Ph.D. Astronomy (in Earth and Space Science)
- State University of New York at Stony Brook, Stony Brook, New York, United States
Work Experience
- Steward Observatory/Department of Astronomy (2002 - Ongoing)
Awards
- Outstanding Faculty/Staff Award
- The University of Arizona Asian Pacific American Student Affairs, Spring 2021
Interests
Teaching
Life in the Universe, Astrobiology, Stars, Astronomy General Education
Research
Star and planet formation, circumstellar disk evolution, feedback from massive stars to next generation star and planet formation, astrobiology, Stellar birth environment and protoplanetary disk evolution.
Courses
2023-24 Courses
-
Exploring Our Universe
ASTR 170B1 (Fall 2023) -
Honors Independent Study
ASTR 299H (Fall 2023)
2022-23 Courses
-
Honors Independent Study
PHYS 499H (Spring 2023) -
Honors Independent Study
ASTR 499H (Fall 2022) -
Life In The Universe
ASTR 202 (Fall 2022)
2021-22 Courses
-
Honors Thesis
ASTR 498H (Spring 2022)
2020-21 Courses
-
The Physical Universe
ASTR 170B1 (Spring 2021) -
Life In The Universe
ASTR 202 (Fall 2020)
2018-19 Courses
-
Honors Independent Study
ASTR 499H (Spring 2019) -
Life In The Universe
ASTR 202 (Fall 2018)
2017-18 Courses
-
Directed Research
ASTR 392 (Spring 2018) -
Life In The Universe
ASTR 202 (Fall 2017)
2016-17 Courses
-
The Physical Universe
ASTR 170B1 (Fall 2016)
Scholarly Contributions
Journals/Publications
- Bialy, S., Bryden, G., Burkhart, B., Chung, H., Godard, B., Hamden, E. T., Hasegawa, Y., Haworth, T. J., Hoadley, K., Hoenk, M., Imara, N., Kennicutt, R., Kiessling, A., Kim, D., Kong, S., Krumholz, M., Lee, M., Luthman, E., McGuire, J. P., , Nikzad, S., et al. (2022).
Hyperion: the origin of the stars. A far UV space telescope for high-resolution spectroscopy over wide fields
. Journal of Astronomical Telescopes, Instruments, and Systems, 8(04). doi:10.1117/1.jatis.8.4.044008 - Hasegawa, Y., Haworth, T. J., Hoadley, K., Kim, J. S., Goto, H., Juzikenaite, A., Turner, N. J., Pascucci, I., & Hamden, E. T. (2022). "Determining Dispersal Mechanisms of Protoplanetary Disks Using Accretion and Wind Mass Loss Rates". apjl, 926(2), L23.
- Haworth, T. J., Kim, J. S., Qiao, L., Winter, A. J., Williams, J. P., Clarke, C. J., Owen, J. E., Facchini, S., Ansdell, M., Kama, M., & Ballabio, G. (2022). "An APEX search for carbon emission from NGC 1977 proplyds". mnras, 512(2), 2594-2603.
- Sprague, D., Culhane, C., Kounkel, M., Olney, R., Covey, K., Hutchinson, B., Lingg, R., Stassun, K. G., Rom{\'an-Z\'u\~niga}, C. G., Roman-Lopes, A., Nidever, D., Beaton, R. L., Borissova, J., Stutz, A., Stringfellow, G. S., Ram{\'\irez}, K. P., Ram{\'\irez-Preciado}, V., Hern{\'andez}, J., Kim, J. S., & Lane, R. R. (2022). APOGEE Net: An Expanded Spectral Model of Both Low-mass and High-mass Stars. \aj, 163(4), 152.
- Fang, M., Kim, J. S., Pascucci, I., & Apai, D. (2021). An Improved Hertzsprung-Russell Diagram for the Orion Trapezium Cluster. Astrophysical Journal, 908(1), 49.
- Haworth, T. J., Kim, J. S., Winter, A. J., Hines, D. C., Clarke, C. J., Sellek, A. D., Ballabio, G., & Stapelfeldt, K. R. (2021). Proplyds in the flame nebula NGC 2024. Monthly Notices of the Royal Astronomical Society, 501(3), 3502-3514.
- Kim, S., Lim, B., Bessell, M. S., Kim, J. S., & Sung, H. (2021). The Sejong Open Cluster Survey (SOS). VII. A Photometric Study of the Young Open Cluster IC 1590. Astronomical Journal, 162(4), 140.
- Silverberg, S. M., G{"unther}, H. M., Kim, J. S., Principe, D. A., & Wolk, S. J. (2021). What's Behind the Elephant's Trunk? Identifying Young Stellar Objects on the Outskirts of IC 1396. Astronomical Journal, 162(6), 279.
- Ballabio, G., Clarke, C. J., Haworth, T. J., Hines, D. C., Kim, J. S., Sellek, A. D., Stapelfeldt, K. R., & Winter, A. J. (2020).
Proplyds in the flame nebula NGC 2024
. Monthly Notices of the Royal Astronomical Society, 501(3), 3502-3514. doi:10.1093/mnras/staa3918 - Fang, M., Hillenbrand, L. A., Kim, J. S., Findeisen, K., Herczeg, G. J., Carpenter, J. M., Rebull, L. M., & Wang, H. (2020). The First Extensive Spectroscopic Study of Young Stars in the North America and Pelican Nebulae. Astrophysical Journal, 904(2), 146.
- Lim, B., Hong, J., Yun, H., Hwang, N., Kim, J. S., Lee, J., Park, B., & Park, S. (2020). The Origin of a Distributed Stellar Population in the Star-forming Region W4. Astrophysical Journal, 899(2), 121.
- Ram{\'\irez-Preciado}, V. G., Roman-Lopes, A., Rom{\'an-Z\'u\~niga}, C. G., Hern{\'andez}, J., Garc{\'\ia-Hern\'andez}, D., Stassun, K., Stringfellow, G. S., & Kim, J. S. (2020). Spectral Classification of B Stars: The Empirical Sequence Using SDSS-IV/APOGEE Near-IR Data. Astrophysical Journal, 894(1), 5.
- Apai, D., Banzatti, A., Ballering, N. P., Bergin, E. A., Bixel, A., Birnstiel, T., Bose, M., Brittain, S., Cadillo-Quiroz, H., Carrera, D., Ciesla, F., Close, L., Desch, S. J., Dong, C., Dressing, C. D., Fernandes, R. B., France, K., Gharib-Nezhad, E., Haghighipour, N., , Hartnett, H. E., et al. (2019). Planetary Habitability Informed by Planet Formation and Exoplanet Demographics. BAAS, Astro 2020 Science White Paper, 51(3), 475.
- Drake, J., Alvarado-G{'omez}, J., Airapetian, V., Cauley, P., Argiroffi, C., Browning, M., Christian, D., Cohen, O., Corrales, L., Danchi, W., Val-Borro, M. .., Dong, C., Forman, W., France, K., Gallo, E., Garcia-Sage, K. .., Garraffo, C., Gelino, D., Gronoff, G., , G{"unther}, H., et al. (2019). High-Energy Photon and Particle Effects on Exoplanet Atmospheres and Habitability. ASTRO2020 White Paper, https://arxiv.org/pdf/1903.12338v1.pdf.More infoAstro2020 Science White Paper
- Fang, M., Pascucci, I., Kim, J. S., & Edwards, S. (2019). Double-peaked [O i] Profile: A Likely Signature of the Gaseous Ring around KH 15D. The Astrophysical Journal, 879(1), L10.
- Gaspar, A., Apai, D., Augereau, J., Ballering, N. P., Beichman, C. A., Boccaletti, A., Booth, M., Bowler, B. P., Bryden, G., Chen, C. H., Currie, T., Danchi, W. C., Debes, J., Defr{\`ere}, D., Ertel, S., Jackson, A. P., Kalas, P. G., Kennedy, G. M., Kenworthy, M. A., , Kim, J. S., et al. (2019). Modeling Debris Disk Evolution. \baas, 51(3), 69.
- Harman, C., Airapetian, V., Apai, D., Arney, G., Buzasi, D., Cadillo-Quiroz, H., Danchi, B., Domagal-Goldman, S., Dong, C., Dressing, C., Felton, R., Fisher, T. M., France, K., Gelino, D., Hartnett, H. E., Kalas, P., Kane, S. R., Kiang, N. Y., Kim, J. S., , Kopparapu, R., et al. (2019). A Balancing Act: Biosignature and Anti-Biosignature Studies in the Next Decade and Beyond. Astro 2020 Science White Paper, 51(3), 414.More infohttps://113qx216in8z1kdeyi404hgf-wpengine.netdna-ssl.com/wp-content/uploads/2019/05/414_harman.pdf
- Isella, A., Ricci, L., Andrews, S., Baruteau, C., Berger, J., Bergin, E., Birnstiel, T., Bowler, B., Brogan, C., Carrasco, G. C., Chandler, C., Currie, T., Cuzzi, J., D'Angelo, G., Dong, R., Duchene, G., Dutrey, A., Ercolano, B., Espaillat, C., , Estrada, P., et al. (2019). Observing Planetary Systems in the Making. \baas, 51(3), 174.
- Jang-Condell, H. .., Brittain, S., Weinberger, A., Liu, M., Faherty, J., Bae, J., Andrews, S., Ansdell, M., Birnstiel, T., Boss, A., Close, L., Currie, T., Desch, S., Dodson-Robinson, S. .., Dong, C., Duchene, G., Espaillat, C., Follette, K., Gaidos, E., , Gao, P., et al. (2019). Protoplanetary Disk Science Enabled by Extremely Large Telescopes. arXiv e-prints.
- Kounkel, M., Covey, K., Moe, M., Kratter, K., Su{'arez}, G., Stassun, K., Rom{'an-Z'u~niga}, C., Hernandez, J., Kim, J., Pe{~na, R. K., Roman-Lopes, A. .., Stringfellow, G., Jaehnig, K., Borissova, J., Tofflemire, B., Krolikowski, D., Rizzuto, A., Kraus, A., Badenes, C., , Longa-Pe{~na}, P., et al. (2019). Close companions around young stars. The Astrophysical Journal, 157, 196. doi:https://doi.org/10.3847/1538-3881/ab13b1
- Lyra, W., Haworth, T., Bitsch, B., Casassus, S., Cuello, N., Currie, T., G{'asp'ar}, A., Jang-Condell, H. .., Klahr, H., Leigh, N., Lodato, G., Mac, L. M., Maddison, S., Mamatsashvili, G., McNally, C., Isella, A., P{'erez}, S., Ricci, L., Sengupta, D., , Stamatellos, D., et al. (2019). Planet formation: The case for large efforts on the computational side. arXiv e-prints.
- Meng, H., Rieke, G. H., Kim, J. S., Sicilia-Aguilar, A., Cross, N., Esplin, T., Rebull, L. M., & Hodapp, K. W. (2019). Near-infrared Variability of Low-mass Stars in IC 1396A and Tr 37. The Astrophysical Journal, 878(1), 7.
- Roman-Lopes, A. .., Rom{'an-Z'u~niga}, C., Tapia, M., Hern{'andez}, J., Ram{'{i}rez-Preciado}, V., Stringfellow, G., Ybarra, J., Kim, J., Minniti, D., Covey, K., Kounkel, M., Su{'arez}, G., Borissova, J., Garc{'{i}a-Hern'andez}, D., Zamora, O., & Trujillo, J. (2019). Massive Stars in the SDSS-IV/APOGEE-2 Survey. II. OB-stars in the W345 Complexes. The Astrophysical Journal, 873, 66. doi:10.3847/1538-4357/ab0305
- Cottle, J., Covey, K., Su{'arez}, G., Rom{'an-Z'u~niga}, C., Schlafly, E., Downes, J., Ybarra, J., Hernandez, J., Stassun, K., Stringfellow, G., Getman, K., Feigelson, E., Borissova, J., Kim, J., Roman-Lopes, A. .., Da Rio, N., De Lee, N., Frinchaboy, P., Kounkel, M., , Majewski, S., et al. (2018). The APOGEE-2 Survey of the Orion Star-forming Complex. I. Target Selection and Validation with Early Observations. Astrophysical Journal Supplement, 236, 27.
- Eisner, J., Arce, H., Ballering, N., Bally, J., Andrews, S., Boyden, R., Di Francesco, J., Fang, M., Johnstone, D., Kim, J., Mann, R., Matthews, B., Pascucci, I., Ricci, L., Sheehan, P., & Williams, J. (2018). Protoplanetary Disk Properties in the Orion Nebula Cluster: Initial Results from Deep, High-resolution ALMA Observations. Astrophysical Journal, 860, 77. doi:10.3847/1538-4357/aac3e2
- Fang, M., Kim, J., Pascucci, I., Apai, D., Zhang, L., Sicilia-Aguilar, A. .., Alonso-Martinez, M. .., Eiroa, C., & Wang, H. (2018). VizieR Online Data Catalog: Spectroscopy of the foreground population in Orion A (Fang+, 2017). VizieR Online Data Catalog, 515.
- Jose, J., Pandey, A., Samal, M., Ojha, D., Ogura, K., Kim, J., Kobayashi, N., Goyal, A., Chauhan, N., & Eswaraiah, C. (2018). VizieR Online Data Catalog: YSOs on HII complex Sh2-252 (Jose+, 2013). VizieR Online Data Catalog, 743.
- Kounkel, M., Covey, K., Su{'arez}, G., Rom{'an-Z'u~niga}, C., Hernandez, J., Stassun, K., Jaehnig, K., Feigelson, E., Pe{~na, R. K., Roman-Lopes, A. .., Da Rio, N., Stringfellow, G., Kim, J., Borissova, J., Fern{'andez-Trincado}, J., Burgasser, A., Garc{'{i}a-Hern'andez}, D., Zamora, O., Pan, K., & Nitschelm, C. (2018). The APOGEE-2 Survey of the Orion Star-forming Complex. II. Six-dimensional Structure. Astrophysical Journal, 156, 84. doi:10.3847/1538-4365/aabada
- Wu, Y., Close, L., Kim, J., Males, J., & Morzinski, K. (2018). The Intricate Structure of HH 508, the Brightest Microjet in the Orion Nebula. Astrophysical Journal Letters, 854, 144. doi:https://doi.org/10.3847/1538-4357/aaa96b
- Da Rio, N., Tan, J., Covey, K., Cottaar, M., Foster, J., Cullen, N., Tobin, J., Kim, J., Meyer, M., Nidever, D., Stassun, K., Chojnowski, S., Flaherty, K., Majewski, S., Skrutskie, M., Zasowski, G., & Pan, K. (2017). IN-SYNC. V. Stellar Kinematics and Dynamics in the Orion A Molecular Cloud. Astrophysical Journal, 845, 105.
- Fang, M., Kim, J., Pascucci, I., Apai, D., Zhang, L., Sicilia-Aguilar, A. .., Alonso-Mart{\'{\i}nez}, M., Eiroa, C., & Wang, H. (2017). NGC 1980 Is Not a Foreground Population of Orion: Spectroscopic Survey of Young Stars with Low Extinction in Orion A. Astrophysical Journal, 153, 188.
- Kim, J. S. (2016). IN-SYNC. IV. The Young Stellar Population in the Orion A Molecular Cloud. The Astrophysical Journal, 818, 16. doi:10.3847/0004-637X/818/1/59
- Kim, J. S. (2016). STAR FORMATION IN W3-AFGL333: YOUNG STELLAR CONTENT, PROPERTIES AND ROLES OF EXTERNAL FEEDBACK. Astrophysical Journal.
- Kim, J. S., Clarke, C. J., Fang, M., & Facchini, S. (2016). Proplyds Around a B1 Star: 42 Orionis in NGC 1977. Astrophysical Journal Letters, 826, 15. doi:10.3847/2041-8205/826/1/L15
- Kim, J. S., Fang, M., Pascucci, I., Apai, D., & Manara, C. F. (2016). A Candidate Planetary-mass Object with a Photoevaporating Disk in Orion. Astrophysical Journal Letters, 833, 16. doi:10.3847/2041-8213/833/2/L16
- Kim, J. S., Lim, B., Sung, H., Bessell, M. S., Hwang, N., & Park, B. (2016). A Constraint on the Formation Timescale of the Young Open Cluster NGC 2264: Lithium Abundance of Pre-main Sequence Stars. Astrophysical Journal, 831, 116. doi:10.3847/0004-637X/831/2/116
- Shvonski, A., Mamajek, E., Kim, J., Meyer, M., & Pecaut, M. (2016). A Spitzer Space Telescope Survey for Dusty Debris Disks in the Nearby 32 Orionis Group. ArXiv e-prints.
- Kim, J. S. (2015). An Optical Spectroscopic Survey of the Serpens Main Cluster: Evidence for Two Populations?. Astronomical Journal, 149, 16. doi:10.1088/0004-6256/149/3/103
- Kim, J. S. (2015). Sejong Open Cluster Survey (SOS) - IV. The Young Open Clusters NGC 1624 and NGC 1931. Astronomical Journal. doi:10.1088/0004-6256/149/4/127
- Kim, J. S. (2015). Sejong Open Cluster Survey (SOS) - V. The Active Star Forming Region SH 2-255-257. Journal of the Korean Astronomical Society,, 48(6), 343-355. doi:10.5303/JKAS.2015.48.6.343
- Kim, J. S. (2015). The O- and B- type stellar population in W3: beyond the high-density layer. The Astrophysical Journal, 813, 42.
- Kim, J. S. (2014). Sejong Open Cluster Survey (SOS) - III. The young open cluster NGC 1893 in the H II region W8. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. doi:10.1093/mnras/stu1170
- Kim, J. S. (2014). Sejong Open Cluster Survey (SOS) – II. IC 1848 cluster in the H ii region W5 West. MNRAS.
- Sung, H., Lim, B., Bessell, M. S., Kim, J. S., Hur, H., Chun, M., & Park, B. (2014). SEJONG OPEN CLUSTER SURVEY (SOS). 0. TARGET SELECTION AND DATA ANALYSIS. JOURNAL OF THE KOREAN ASTRONOMICAL SOCIETY, 46(3), 103-123.More infoStar clusters are superb astrophysical laboratories containing cospatial and coeval samples of stars with similar chemical composition. We initiate the Sejong Open cluster Survey (SOS) - a project dedicated to providing homogeneous photometry of a large number of open clusters in the SAAO Johnson-Cousins' UBVI system. To achieve our main goal, we pay much attention to the observation of standard stars in order to reproduce the SAAO standard system.
- Fang, M., Kim, J. S., van Boekel, R., Sicilia-Aguilar, A., Henning, T., & Flaherty, K. (2013). YOUNG STELLAR OBJECTS IN LYNDS 1641: DISKS, ACCRETION, AND STAR FORMATION HISTORY. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 207(1).More infoWe investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, the Two Micron All Sky Survey, and XMM covering similar to 1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use these data, along with archival photometric data, to derive spectral types, extinction values, masses, ages, and accretion rates. We obtain a disk fraction of similar to 50% in L1641. The disk frequency is almost constant as a function of stellar mass with a slight peak at log(M-*/M-circle dot) approximate to -0.25. The analysis of multi-epoch spectroscopic data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses. Forty-six new transition disk (TD) objects are confirmed in this work, and we find that the fraction of accreting TDs is lower than for optically thick disks (40%-45% versus 77%-79%, respectively). We confirm our previous result that the accreting TDs have a median accretion rate similar to normal optically thick disks. We confirm that two star formation modes (isolated versus clustered) exist in L1641. We find that the diskless YSOs are statistically older than the YSOs with optically thick disks and the TD objects have a median age that is intermediate between those of the other two populations. We tentatively study the star formation history in L1641 based on the age distribution and find that star formation started to be active 2-3 Myr ago.
- Jose, J., Pandey, A. K., Samal, M. R., Ojha, D. K., Ogura, K., Kim, J. S., Kobayashi, N., Goyal, A., Chauhan, N., & Eswaraiah, C. (2013). Young stellar population and ongoing star formation in the H ii complex Sh2-252. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 432(4), 3445-3461.More infoIn this paper, an extensive survey of the star-forming complex Sh2-252 has been undertaken with an aim to explore its hidden young stellar population as well as to understand the structure and star formation history for the first time. This complex is composed of five prominent embedded clusters associated with the subregions A, C, E, NGC 2175s and Teu 136. We used Two Micron All Sky Survey-near-infrared and Spitzer-Infrared Array Camera, Multiband Imaging Photometer for Spitzer photometry to identify and classify the young stellar objects (YSOs) by their infrared (IR) excess emission. Using the IR colour-colour criteria, we identified 577 YSOs, of which, 163 are Class I, 400 are Class II and 14 are transition disc YSOs, suggesting a moderately rich number of YSOs in this complex. Spatial distribution of the candidate YSOs shows that they are mostly clustered around the subregions in the western half of the complex, suggesting enhanced star formation activity towards its west. Using the spectral energy distribution and optical colour-magnitude diagram-based age analyses, we derived probable evolutionary status of the subregions of Sh2-252. Our analysis shows that the region A is the youngest (similar to 0.5 Myr), the regions B, C and E are of similar evolutionary stage (similar to 1-2 Myr) and the clusters NGC 2175s and Teu 136 are slightly evolved (similar to 2-3 Myr). Morphology of the region in the 1.1 mm map shows a semicircular shaped molecular shell composed of several clumps and YSOs bordering the western ionization front of Sh2-252. Our analyses suggest that next generation star formation is currently under way along this border and that possibly fragmentation of the matter collected during the expansion of the H ii region as one of the major processes is responsible for such stars. We observed the densest concentration of YSOs (mostly Class I, similar to 0.5 Myr) at the western outskirts of the complex, within a molecular clump associated with water and methanol masers and we suggest that it is indeed a site of cluster formation at a very early evolutionary stage, sandwiched between the two relatively evolved CH ii regions A and B.
- Lim, B., Sung, H., Karimov, R., & Ibrahimov, M. (2013). SEJONG OPEN CLUSTER SURVEY. I. NGC 2353. JOURNAL OF THE KOREAN ASTRONOMICAL SOCIETY, 44(2), 39-48.More infoUBVI CCD photometry of NGC 2353 is performed as a part of the "Sejong Open cluster Survey" (SOS). Using photometric membership criteria we selelct probable members of the cluster. We derive the reddening and distance to the cluster, i.e., E(B - V) = 0.10 +/- 0.02 mag and 1.17 +/- 0.04 kpc, respectively. We find that the projected distribution of the probable members on the sky is elliptical in shape rather than circular. The age of the cluster is estimated to be log(age)=8.1 +/- 0.1 in years, older than what was found in previous studies. The minimum value of binary fraction is estimated to be about 48 +/- 5 percent from a Gaussian function fit to the distribution of the distance moduli of the photometric members. Finally, we also obtain the luminosity function and the initial mass function (IMF) of the probable cluster members. The slope of the IMF is Gamma = -1.3 +/- 0.2.
- Lim, B., Sung, H., Kim, J. S., Bessell, M. S., & Karimov, R. (2013). Sejong Open Cluster Survey (SOS) - II. IC 1848 cluster in the HII region W5West. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 438(2), 1451-1465.More infoIC 1848 is one of the young open clusters in the giant star-formingCas OB6association. Several interesting aspects relating to star formation processes in giant star-forming regions attracted us to study the initial mass function (IMF), star formation mode and properties of pre-mains-equence (PMS) stars. A UBVI and H alpha photometric study of the young open cluster IC 1848 was conducted as part of the 'Sejong Open Cluster Survey'. We have selected 105 earlytype members from photometric diagrams. Their mean reddening is < E(B -V)> = 0.660 +/- 0.054 mag. Using the published photometric data with near-and mid-infrared archival data we confirmed the normal reddening law (R-V = 3.1) towards the cluster (IC 1848). A careful zero-age main-sequence fitting gives a distance modulus of V-0 - M-V = 11.7 +/- 0.2mag, equivalent to 2.2 +/- 0.2 kpc. H alpha photometry and the list of young stellar objects identified by Koenig et al. permitted us to select a large number of PMS stars comprising 196 H alpha emission stars, 35 H alpha emission candidates, 5 Class I, 368 Class II and 24 transition disc candidates. From the Hertzsprung-Russell diagram using stellar evolution models, we estimate an age of 5 Myr from several evolved stars and 3 Myr from the PMS stars. The IMF was derived from stars with mass larger than 3M(circle dot), and the slope is slightly steeper (Gamma = -1.6 +/- 0.2) than the Salpeter/Kroupa IMF. Finally, we estimated the mass accretion rate of PMS stars with an ultraviolet excess. The mean mass accretion rate is about 1.4 x 10-8M(circle dot) yr(-1) in the mass range of 0.5-2M(circle dot), whereas intermediate-mass stars (>= 2.5M(circle dot)) exhibit a much higher accretion rate of M > 10(-6)M(circle dot)yr(-1).
- Sicilia-Aguilar, A., Kim, J. S., Sobolev, A., Getman, K., Henning, T., & Fang, M. (2013). The low-mass stellar population in the young cluster Tr 37 Disk evolution, accretion, and environment. ASTRONOMY & ASTROPHYSICS, 559.More infoAims. We present a study of accretion and protoplanetary disks around M-type stars in the 4 Myr-old cluster Tr 37. With a well-studied solar-type population, Tr 37 is a benchmark for disk evolution.
- Kim, J. S., Bouwman, J., Carpenter, J. M., Henning, T., Hillenbrand, L. A., Hines, D. C., Hollenbach, D., Lunine, J. I., Malhotra, R., Mamajek, E. E., Meyer, M. R., Moro-martin, A., Najita, J. R., Pascucci, I., Silverstone, M. D., & Wolf, S. (2007).
Are Debris Disks and Massive Planets Correlated
. The Astrophysical Journal, 658(2), 1312-1321. doi:10.1086/511746More infoUsing data from the Spitzer Space Telescope Legacy Science Program Formation and Evolution of Planetary Systems (FEPS), we have searched for debris disks around nine FGK stars (2-10 Gyr), known from radial velocity (RV) studies to have one or more massive planets. Only one of the sources, HD 38529, has excess emission above the stellar photosphere; at 70 μm the signal-to-noise ratio in the excess is 4.7, while at λ < 30 μm there is no evidence of excess. The remaining sources show no excesses at any Spitzer wavelengths. Applying survival tests to the FEPS sample and the results for the FGK survey recently published in Bryden et al., we do not find a significant correlation between the frequency and properties of debris disks and the presence of close-in planets. We discuss possible reasons for the lack of a correlation.
Proceedings Publications
- Kim, J., Fang, M., Eisner, J., Pascucci, I., Apai, D., Clarke, C., Facchini, S., Manara, C., Kounkel, M., & Covey, K. (2018, jul). Probing Effect of External UV Radiation on Young Stellar and Substellar Mass Objects: Is Orion a Special Place for Observing External Photoevaporation of Disks?. In 20th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun.
- Kim, J., Pascucci, I., Allen, L., Apai, D., Bergin, T., Ciesla, F., Eisner, J., Fang, M., Krijt, S., Najita, J., Rieke, G., & Salyk, C. (2017, nov). Earths in Other Solar Systems: Fundamental Protoplanetary Disk Properties and Their Evolution. In LPI Contributions, 2042, 4071.
- Kim, J. S. (2014, 8). Disk Evolution of Young Stellar Objects in Lynds 1641. In The 10th Pacific Rim Conference on Stellar Astrophysics.
Presentations
- Kim, J. S. (2020, February 11-13). Probing Star formation & UV environment with Spitzer. Celebrating the Legacy of the Spitzer Space Telescope. Pasadena, California: California Institute of Technology,.
- Kim, J. S. (2020, November). Observations of external photoevaporation at intermediate UV radiation: Proplyds. Threats from the Surroundings. e-conference: European Southern Observatory.More infoInvited speaker for a conference, "Threats from the Surroundings" - an e-workshop on the importance of environment for the evolution of protoplanetary discs and formation of planetshttps://www.eso.org/sci/meetings/2020/tfts2020/invited.html
- Kim, J. S. (2020, November). Protoplanetary Disks in Diverse Star Forming Environments. Colloquium talk for School of Physics and Astronomy, Queen Mary University of London, London, UK. e-colloquium via zoom; Queen Mary University of London, London, UK: Queen Mary University of London, London, UK.More infoColloquium talk for School of Physics and Astronomy, Queen Mary University of London, London, UK
- Kim, J. S. (2020, October 7). Astronomy in University of Arizona. Daegu National Science Center - Talk Concert (South Korea). via Zoom (South Korea - nationwide program by Daegu National Science Center): Daegu National Science Center, Daegu, South Korea.
- Kim, J. S. (2019, February). Observing with MMT: Available Instruments and Science Highlights. KGMT Users meeting. Daejeon, Korea: Korea Asstronomy and Space Science Institute (KASI).
- Kim, J. S. (2019, May). MMT's Powerful Large Field of View Multi-Object Spectroscopy Probes Star Formation in the Milky Way. MMT Observatory's 40th Anniversary Symposium and Celebration. University of Arizona: MMT.
- Kim, J. S., & Fang, M. (2019, September). Characterizing properties of accreting young stars in the Orion Nebula Cluster (Trapezium cluster). NExSS EOS team (Earth in Other Solar System) All Hands Meeting. Tucson, AZ: NExSS EOS team (Steward Observatory/Univ. of Arizona).
- Kim, J. S., Pascucci, I., Apai, D., & Eisner, J. A. (2017, November). EARTHS IN OTHER SOLAR SYSTEMS: FUNDAMENTAL PROTOPLANETARY DISK PROPERTIES AND THEIR EVOLUTION. Habitable Worlds 2017: A System Science Workshop (NASA NExSS workshop). Laramie, WY: NASA - the Nexus for Exoplanet System Science (NExSS).More infoThe Nexus for Exoplanet System Science (NExSS), a NASA research coordination network dedicated to the study of planetary habitability held a five-day workshop on Habitable Worlds 2017: A System Science Workshop, November 13–17, 2017 at the University of Wyoming Conference Center (UWCC) and Marian H. Rochelle Gateway Center (MHRGC) in Laramie, Wyoming. I was one of the local organization committee and also served to select scientific programs.
- Kim, J. S. (2015, April). Building on successful existing collaborations with the University of Arizona. Korean Astronimical Society 50th year anniversary meeting. Seoul National University.
- Kim, J. S. (2014, March, 2014). Probing triggered star formation: young stars associated with AFGL333 in W3. Search for Life Beyond the Solar System. Exoplanets, Biosignatures & Instruments.
Poster Presentations
- Kim, J. S. (2021, February). External Photoevaporation of Protoplanetary Disks in Intermediate UV Environments NGC 1977 and NGC 2024. Conference: Habitable World 2021. on-line: AAS, NASA/NExSS.More infoIn coordination with the American Astronomical Society (AAS), the Nexus for Exoplanet System Science (NExSS) is pleased to announce the AAS Topical Conference: Habitable Worlds 2021 (HabWorlds2). The goal of the workshop is to identify opportunities and obstacles to cross-disciplinary collaboration on the questions of what makes planets habitable, and life on them detectable. The culminating event will be a synchronous, online conference 22-26 February 2021.
- Kim, J. S. (2021, March). External Photoevaporation of Disks around Low Mass Young Stellar and Sub-Stellar Objects. Conference: Cool Stars 20.5. on-line: Harvard Smithsonian Center for Astrophysics (CfA) & MIT Kavli Institute.More infohttps://zenodo.org/record/4568081#.YH5CUxNKjUI
- James, M., Kim, J., & Bally, J. (2019, jan). Variability of Ten Silhouette Disks in the Orion Nebula Cluster in Ten Years. American Astronomical Society Meeting Abstracts #233.
- Wentzel-Long, M. .., Wilking, B., Kim, J., & Bryan, J. (2019, jan). Investigating Circumstellar Disk Destruction in the HII Region W4. American Astronomical Society Meeting Abstracts #233.
- Apai, D., Kim, J. S., Fang, M., Pascucci, I., Fang, M., Pascucci, I., Kim, J. S., & Apai, D. (2017, June). Fantastic YSOs and photoevaporating protoplanetary disks in the Orion’s sibling - NGC 1977. Francesco's Legacy: Star Formation in Space and Time. Florence, Italy: Osservatorio Astrofisico di Arcetri.
Others
- Kim, J. S. (2016, 12). A Spitzer Space Telescope Survey for Dusty Debris Disks in the Nearby 32 Orionis Group. Astro-ph. http://arxiv.org/abs/1612.06924v1More infoWe report Spitzer Space Telescope IRAC 3.6, 4.5, 5.8 and 8 um and MIPS 24 and70 um observations of the 32 Ori Group, a recently discovered nearby stellarassociation situated towards northern Orion. The proximity of the group (~93pc) has enabled a sensitive search for circumstellar dust around group members,and its age (~20 Myr) corresponds roughly to an epoch thought to be importantfor terrestrial planet formation in our own solar system. We quantify infraredexcess emission due to circumstellar dust among group members, utilizingavailable optical (e.g. Hipparcos, Tycho) and near-IR (2MASS) photometry inaddition to the Spitzer IR photometry. We report 4 out of the 14 objects whichexhibit 24 um excess emission more than 4\sigma above the stellar photosphere(>20%) though lacking excess emission at shorter wavelengths: HD 35656 (A0Vn),HD 36338 (F4.5), RX J0520.5+0616 (K3), and HD 35499 (F4). Two objects (HD 35656and RX J0520.0+0612) have 70 um excesses, although the latter lacks 24 umexcess emission. The 24 um disk fraction of this group is 29(+14,-9%), which issimilar to previous findings for groups of comparable ages and places 32 Ori asthe young stellar group with the 2nd most abundant 24 um excesses among groupslacking accreting T Tauri stars (behind only the approximately coeval Beta PicMoving Group). We also model the infrared excess emission using circumstellardust disk models, placing constraints on disk parameters including L_IR/L_*,T_disk, characteristic grain distance, and emitting area. The L_IR/L_* valuesfor all the stars can be reasonably explained by steady state disk evolution.[Journal_ref: ]
- Sung, H., Lim, B., Bessell, M. S., Kim, J. S., Hur, H., Chun, M., & Park, B. (2011, OCT 31). SEJONG OPEN CLUSTER SURVEY (SOS). 0. TARGET SELECTION AND DATA ANALYSIS (vol 46, pg 103, 2013). JOURNAL OF THE KOREAN ASTRONOMICAL SOCIETY.