Peter Behroozi
- Associate Professor, Astronomy
- Associate Astronomer, Steward Observatory
- Member of the Graduate Faculty
Contact
- (520) 621-2288
- Steward Observatory, Rm. N208
- Tucson, AZ 85721
- behroozi@arizona.edu
Degrees
- Ph.D. Physics
- Stanford University
- BA Physics and Mathematics
- Harvard University, Cambridge, Massachusetts, United States
Interests
No activities entered.
Courses
2024-25 Courses
-
Dissertation
ASTR 920 (Spring 2025) -
Dissertation
PHYS 920 (Spring 2025) -
Extrgalac Astr+Cosmology
ASTR 541 (Spring 2025) -
Dissertation
ASTR 920 (Fall 2024) -
Dissertation
PHYS 920 (Fall 2024)
2023-24 Courses
-
Dissertation
ASTR 920 (Spring 2024) -
Dissertation
PHYS 920 (Spring 2024) -
Dissertation
ASTR 920 (Fall 2023) -
Dissertation
PHYS 920 (Fall 2023)
2022-23 Courses
-
Astronomy + Astrophysics
ASTR 300A (Spring 2023) -
Directed Research
PHYS 492 (Spring 2023) -
Dissertation
ASTR 920 (Spring 2023) -
Dissertation
PHYS 920 (Spring 2023) -
Research
ASTR 900 (Spring 2023) -
Dissertation
ASTR 920 (Fall 2022) -
Independent Study
PHYS 599 (Fall 2022) -
Research
ASTR 900 (Fall 2022)
2021-22 Courses
-
Astronomy + Astrophysics
ASTR 300A (Spring 2022) -
Directed Research
ASTR 492 (Spring 2022) -
Dissertation
ASTR 920 (Spring 2022) -
Independent Study
PHYS 599 (Spring 2022) -
Research
ASTR 900 (Spring 2022) -
Directed Research
ASTR 492 (Fall 2021) -
Dissertation
ASTR 920 (Fall 2021) -
Independent Study
PHYS 599 (Fall 2021) -
Research
ASTR 900 (Fall 2021)
2020-21 Courses
-
Dissertation
ASTR 920 (Spring 2021) -
Independent Study
ASTR 499 (Spring 2021) -
Independent Study
PHYS 599 (Spring 2021) -
Research
ASTR 900 (Spring 2021) -
Astronomy + Astrophysics
ASTR 300A (Fall 2020) -
Independent Study
ASTR 499 (Fall 2020) -
Independent Study
PHYS 599 (Fall 2020) -
Research
ASTR 900 (Fall 2020)
2019-20 Courses
-
Cosmology
ASTR 201 (Spring 2020) -
Dissertation
ASTR 920 (Spring 2020) -
Research
ASTR 900 (Spring 2020) -
Dissertation
ASTR 920 (Fall 2019) -
Research
ASTR 900 (Fall 2019)
2018-19 Courses
-
Cosmology
ASTR 201 (Spring 2019) -
Dissertation
ASTR 920 (Spring 2019) -
Research
ASTR 900 (Spring 2019) -
Dissertation
ASTR 920 (Fall 2018) -
Independent Study
ASTR 599 (Fall 2018) -
Research
ASTR 900 (Fall 2018) -
Struc+Dynamics Galaxies
ASTR 540 (Fall 2018)
Scholarly Contributions
Journals/Publications
- Behroozi, P. (2021). Main Sequence Scatter is Real: The Joint Dependence of Galaxy Clustering on Star Formation and Stellar Mass. AJ.More infoWe present new measurements of the clustering of stellar mass-completesamples of $\sim40,000$ SDSS galaxies at $z\sim0.03$ as a joint function ofstellar mass and specific star formation rate (sSFR). Our results confirm whatCoil et al. (2017) find at $z\sim0.7$: galaxy clustering is a stronger functionof sSFR at fixed stellar mass than of stellar mass at fixed sSFR. We also findthat galaxies above the star-forming main sequence (SFMS) with higher sSFR areless clustered than galaxies below the SFMS with lower sSFR, at a given stellarmass. A similar trend is present for quiescent galaxies. This confirms thatmain sequence scatter, and scatter within the quiescent sequence, is physicallyconnected to the large-scale cosmic density field. We compare the resultinggalaxy bias versus sSFR, and relative bias versus sSFR ratio, for differentgalaxy samples across ${0
- Behroozi, P. (2021). An Empirical Determination of the Dependence of the Circumgalactic Mass Cooling Rate and Feedback Mass Loading Factor on Galactic Stellar Mass. ApJ.More infoUsing our measurements of the H$\alpha$ emission line flux originating in thecool (T $\sim10^4$ K) gas that populates the halos of galaxies, we build ajoint model to describe mass of the cool circumgalactic medium (CGM) as afunction of galactic stellar mass ($10^{9.5} < ({\rm M_*/M}_\odot) < 10^{11}$)and environment. Because the H$\alpha$ emission correlates with the maincooling channel for this gas, we are able to estimate the rate at which the CGMcools and becomes fuel for star formation in the central galaxy. We describethis calculation, which uses our observations, previous measurements of somecritical CGM properties, and modeling of the cooling mechanism using the\cloudy modeling suite. We find that the mass cooling rate is larger than thestar formation rates of the central galaxies by a factor of $\sim 4 - 90$,empirically confirming that there is sufficient fuel to resolve the gasconsumption problem and that feedback is needed to avoid collecting too muchcold gas in galaxies. We find excellent agreement between our estimates of boththe mass cooling rates and mass loading factors and the predictions ofindependent theoretical studies. The convergence in results that we find fromseveral completely different treatments of the problem, particularly at thelower end of the galactic mass range, is a strong indication that we have arelatively robust understanding of the quantitative effects of feedback acrossthis mass range.[Journal_ref: ]
- Behroozi, P. (2021). Clustering and Halo Abundances in Early Dark Energy Cosmological Models. MNRAS.More infoLCDM cosmological models with Early Dark Energy (EDE) have been proposed toresolve tensions between the Hubble constant H0 = 100h km/s/Mpc measuredlocally, giving h ~ 0.73, and H0 deduced from Planck cosmic microwavebackground (CMB) and other early universe measurements plus LCDM, giving h ~0.67. EDE models do this by adding a scalar field that temporarily adds darkenergy equal to about 10% of the cosmological energy density at the end of theradiation-dominated era at redshift z ~ 3500. Here we compare linear andnonlinear predictions of a Planck-normalized LCDM model including EDE giving h= 0.728 with those of standard Planck-normalized LCDM with h = 0.678. We findthat nonlinear evolution reduces the differences between power spectra offluctuations at low redshifts. As a result, at z = 0 the halo mass functions ongalactic scales are nearly the same, with differences only 1-2%. However, thedifferences dramatically increase at high redshifts. The EDE model predicts 50%more massive clusters at z = 1 and twice more galaxy-mass halos at z = 4. Evengreater increases in abundances of galaxy-mass halos at higher redshifts maymake it easier to reionize the universe with EDE. Predicted galaxy abundancesand clustering will soon be tested by JWST observations. Positions of baryonicacoustic oscillations (BAOs) and correlation functions differ by about 2%between the models -- an effect that is not washed out by nonlinearities. Bothstandard LCDM and the EDE model studied here agree well with presentlyavailable acoustic-scale observations, but DESI and Euclid measurements willprovide stringent new tests.[Journal_ref: ]
- Behroozi, P. (2021). Mock Lightcones and Theory Friendly Catalogs for the CANDELS Survey. MNRAS.More infoWe present mock catalogs created to support the interpretation of the CANDELSsurvey. We extract halos along past lightcones from the Bolshoi Planckdissipationless N-body simulations and populate these halos with galaxies usingtwo different independently developed semi-analytic models of galaxy formationand the empirical model UniverseMachine. Our mock catalogs have geometries thatencompass the footprints of observations associated with the five CANDELSfields. In order to allow field-to-field variance to be explored, we havecreated eight realizations of each field. In this paper, we present comparisonswith observable global galaxy properties, including counts in observed framebands, luminosity functions, color-magnitude distributions and color-colordistributions. We additionally present comparisons with physical galaxyparameters derived from SED fitting for the CANDELS observations, such asstellar masses and star formation rates. We find relatively good agreementbetween the model predictions and CANDELS observations for luminosity andstellar mass functions. We find poorer agreement for colors and star formationrate distributions. All of the mock lightcones as well as curated "theoryfriendly" versions of the observational CANDELS catalogs are made availablethrough a web-based data hub.[Journal_ref: ]
- Behroozi, P. (2021). Observing Correlations Between Dark Matter Accretion and Galaxy Growth: I. Recent Star Formation Activity in Isolated Milky Way-Mass Galaxies. MNRAS.More infoThe correlation between fresh gas accretion onto haloes and galaxy starformation is critical to understanding galaxy formation. Different theoreticalmodels have predicted different correlation strengths between halo accretionrates and galaxy star formation rates, ranging from strong positivecorrelations to little or no correlation. Here, we present a technique toobservationally measure this correlation strength for isolated Milky Way-massgalaxies with $z < 0.123$. This technique is based on correlations between darkmatter accretion rates and the projected density profile of neighbouringgalaxies; these correlations also underlie past work with splashback radii. Weapply our technique to both observed galaxies in the Sloan Digital Sky Surveyas well as simulated galaxies in the UniverseMachine where we can test anydesired correlation strength. We find that positive correlations between darkmatter accretion and recent star formation activity are ruled out with $\gtrsim85\%$ confidence. Our results suggest that star formation activity may not becorrelated with fresh accretion for isolated Milky Way-mass galaxies at $z=0$and that other processes, such as gas recycling, dominate further galaxygrowth.[Journal_ref: ]
- Behroozi, P. (2021). UniverseMachine: Predicting Galaxy Star Formation over Seven Decades of Halo Mass with Zoom-in Simulations. ApJ.More infoWe apply the empirical galaxy--halo connection model UniverseMachine to darkmatter-only zoom-in simulations of isolated Milky Way (MW)--mass halos alongwith their parent cosmological simulations. This application extends\textsc{UniverseMachine} predictions into the ultra-faint dwarf galaxy regime($ 10^{2}\,\mathrm{M_{\odot}} \leqslant M_{\ast} \leqslant10^{5}\,\mathrm{M_{\odot}}$) and yields a well-resolved stellar mass--halo mass(SMHM) relation over the peak halo mass range $10^8\,\mathrm{M_{\odot}}$ to$10^{15}\,\mathrm{M_{\odot}}$. The extensive dynamic range provided by thezoom-in simulations allows us to assess specific aspects of dwarf galaxyevolution predicted by \textsc{UniverseMachine}. In particular, althoughUniverseMachine is not constrained for dwarf galaxies with $M_* \lesssim10^{8}\,\mathrm{M_{\odot}}$, our predicted SMHM relation is consistent withthat inferred for MW satellite galaxies at $z=0$ using abundance matching.However, UniverseMachine predicts that nearly all galaxies are actively starforming below $M_{\ast}\sim 10^{7}\,\mathrm{M_{\odot}}$ and that these systemstypically form more than half of their stars at $z\lesssim 4$, which isdiscrepant with the star formation histories of Local Group dwarf galaxies thatfavor early quenching. This indicates that the current UniverseMachine modeldoes not fully capture galaxy quenching physics at the low-mass end. Wehighlight specific improvements necessary to incorporate environmental andreionization-driven quenching for dwarf galaxies, and provide a new tool toconnect dark matter accretion to star formation over the full dynamic rangethat hosts galaxies.[Journal_ref: ApJ, 915, 116 (2021)]
- O'Donnell, C., Prather, E. E., & Behroozi, P. (2021). "Making Science Personal: Inclusivity-Driven Design for General-Education Courses". JCST, arXiv:2004.10218.
- Behroozi, F., & Behroozi, P. (2020). "Erratum: ``Reliable determination of contact angle from the height and volume of sessile drops'' [Am. J. Phys. 87(1), 28-32 (2019)]". American Journal of Physics, 88(4), 334-334.
- Behroozi, P., Conroy, C., Wechsler, R. H., Hearin, A., Williams, C. C., Moster, B. P., Yung, L. A., Somerville, R. S., Gottl{"ober}, S., Yepes, G., & Endsley, R. (2020). "The Universe at z > 10: predictions for JWST from the UNIVERSEMACHINE DR1". mnras, 499(4), 5702-5718.
- Bradshaw, C., Leauthaud, A., Hearin, A., Huang, S., & Behroozi, P. (2020). "Physical correlations of the scatter between galaxy mass, stellar content, and halo mass". mnras, 493(1), 337-350.
- Endsley, R., Behroozi, P., Stark, D. P., Williams, C. C., Robertson, B. E., Rieke, M., Gottl{"ober}, S., & Yepes, G. (2020). "Clustering with JWST: Constraining galaxy host halo masses, satellite quenching efficiencies, and merger rates at z = 4-10". mnras, 493(1), 1178-1196.
- Grylls, P. J., Shankar, F., Leja, J., Menci, N., Moster, B., Behroozi, P., & Zanisi, L. (2020). "Predicting fully self-consistent satellite richness, galaxy growth, and star formation rates from the STatistical sEmi-Empirical modeL STEEL". mnras, 491(1), 634-654.
- Huang, S., Leauthaud, A., Hearin, A., Behroozi, P., Bradshaw, C., Ardila, F., Speagle, J., Tenneti, A., Bundy, K., Greene, J., Sif{'on}, C., & Bahcall, N. (2020). "Weak lensing reveals a tight connection between dark matter halo mass and the distribution of stellar mass in massive galaxies". mnras, 492(3), 3685-3707.
- Miller, T. B., Chapman, S. C., Hayward, C. C., Behroozi, P. S., Bradford, M., Willott, C. J., & Wagg, J. (2020). "Investigating Overdensities around z > 6 Galaxies through ALMA Observations of [C II]". apj, 889(2), 98.
- Popping, G., Walter, F., Behroozi, P., Gonz{'alez-L'opez}, J., Hayward, C. C., Somerville, R. S., Werf, P., Aravena, M., Assef, R. J., Boogaard, L., Bauer, F. E., Cortes, P. C., Cox, P., D{'iaz-Santos}, T., Decarli, R., Franco, M., Ivison, R., Riechers, D., Rix, H., & Weiss, A. (2020). "The ALMA Spectroscopic Survey in the HUDF: A Model to Explain Observed 1.1 and 0.85 mm Dust Continuum Number Counts". apj, 891(2), 135.
- Yaryura, C. Y., Abadi, M. G., Gottl{"ober}, S., Libeskind, N. I., Cora, S. A., Ruiz, A. N., Vega-Mart{'inez}, C. A., Yepes, G., & Behroozi, P. (2020). "Associations of dwarf galaxies in a LambdaCDM Universe". mnras, 499(4), 5932-5940.
- Yung, L. A., Somerville, R. S., Finkelstein, S. L., Popping, G., Dav{'e}, R., Venkatesan, A., Behroozi, P., & Ferguson, H. C. (2020). "Semi-analytic forecasts for JWST - IV. Implications for cosmic reionization and LyC escape fraction". mnras, 496(4), 4574-4592.
- Zhang, H., Fang, T., Zaritsky, D., Behroozi, P., Werk, J., & Yang, X. (2020). "Observing the Effects of Galaxy Interactions on the Circumgalactic Medium". apjl, 893(1), L3.
- Zhang, H., Yang, X., Zaritsky, D., Behroozi, P., & Werk, J. (2020). "H-alpha Emission and the Dependence of the Circumgalactic Cool Gas Fraction on Halo Mass". apj, 888(1), 33.
- Allen, M., Behroozi, P., & Ma, C. (2019). Constraining scatter in the stellar mass-halo mass relation for haloes less massive than the Milky Way. Monthly Notices of the Royal Astronomical Society, 488(4), 4916-4925.
- Behroozi, F., & Behroozi, P. (2019). Reliable determination of contact angle from the height and volume of sessile drops. American Journal of Physics, 87(1), 28-32.
- Behroozi, P., Becker, M., Bosch, F., Conroy, C., Dickinson, M., Hirata, C. M., Hearin, A., Leauthaud, A., Ly, C., Mao, Y., Moster, B., O'Donnell, C., Papovich, C., Rodriguez, A., Somerville, R., Tollerud, E., Tinker, J., Wang, Y., Wechsler, R., , Woodrum, C., et al. (2019). Empirically Constraining Galaxy Evolution. Bulletin of the American Astronomical Society, 51(3), 125.
- Behroozi, P., Wechsler, R. H., Hearin, A. P., & Conroy, C. (2019). UNIVERSEMACHINE: The correlation between galaxy growth and dark matter halo assembly from z = 0-10. Monthly Notices of the Royal Astronomical Society, 488(3), 3143-3194.
- Dickinson, M., Wang, Y., Bartlett, J., Behroozi, P., Brinchmann, J., Capak, P., Chary, R., Cimatti, A., Coil, A., Conroy, C., Daddi, E., Donahue, M., Eisenhardt, P., Ferguson, H. C., Glazebrook, K., Furlanetto, S., Gonzalez, A., Helou, G., Hopkins, P. F., , Kartaltepe, J., et al. (2019). Observing Galaxy Evolution in the Context of Large-Scale Structure. Bulletin of the American Astronomical Society, 51(3), 538.
- Finkelstein, S. L., D'Aloisio, A., Paardekooper, J., Ryan Jr., ., Behroozi, P., Finlator, K., Livermore, R., Upton, S., Dalla, V. C., & Khochfar, S. (2019). Conditions for Reionizing the Universe with a Low Galaxy Ionizing Photon Escape Fraction. Astrophysical Journal, 879(1), 36.
- Goh, T., Primack, J., Lee, C. T., Aragon-Calvo, M., Hellinger, D., Behroozi, P., Rodriguez-Puebla, A., Eckholm, E., & Johnston, K. (2019). Dark matter halo properties versus local density and cosmic web location. Monthly Notices of the Royal Astronomical Society, 483(2), 2101-2122.
- Hearin, A., Behroozi, P., Kravtsov, A., & Moster, B. (2019). Clustering constraints on the relative sizes of central and satellite galaxies. Monthly Notices of the Royal Astronomical Society, 489(2), 1805-1819.
- Lundquist, M., Paterson, K., Fong, W., Sand, D., Andrews, J., Shivaei, I., Daly, P., Valenti, S., Yang, S., Christensen, E., Gibbs, A., Shelly, F., Wyatt, S., Eskandari, O., Kuhn, O., Amaro, R., Arcavi, I., Behroozi, P., Butler, N., , Chomiuk, L., et al. (2019). Searches after Gravitational Waves Using ARizona Observatories (SAGUARO): System Overview and First Results from Advanced LIGO/Virgo\textquoterights Third Observing Run. Astrophysical Journal Letters, 881(2), L26.
- Pandya, V., Primack, J., Behroozi, P., Dekel, A., Zhang, H., Eckholm, E., Faber, S. M., Ferguson, H. C., Giavalisco, M., Guo, Y., Hathi, N., Kodra, D., Koekemoer, A. M., Koo, D. C., Newman, J., & Wel, A. (2019). Can intrinsic alignments of elongated low-mass galaxies be used to map the cosmic web at high redshift?. Monthly Notices of the Royal Astronomical Society, 488(4), 5580-5593.
- Peeples, M., Behroozi, P., Bordoloi, R., Brooks, A., Bullock, J. S., Burchett, J. N., Chen, H., Chisholm, J., Christensen, C., Coil, A., Corlies, L., Diamond-Stanic, A., Donahue, M., Faucher-Gigu{\`ere}, C., Ferguson, H., Fielding, D., Fox, A. J., French, D. M., Furlanetto, S. R., , Gennaro, M., et al. (2019). Understanding the circumgalactic medium is critical for understanding galaxy evolution. Bulletin of the American Astronomical Society, 51(3), 368.
- Wang, Y., Bean, R., Behroozi, P., Chuang, C., Dell'antonio, I., Dickinson, M., Dore, O., Eisenstein, D., Foley, R., Glazebrook, K., Guzzo, L., Hirata, C., Ho, S., Hudson, M., Jain, B., Natarajan, P., Newman, J., Orsi, A., Padmanabhan, N., , Peacock, J., et al. (2019). Illuminating the dark universe with a very high density galaxy redshift survey over a wide area. Bulletin of the American Astronomical Society, 51(3), 508.
- Wang, Y., Robberto, M., Dickinson, M., {Hillenbrand, }., Fraser, W., Behroozi, P., Brinchmann, J., Chuang, C., Cimatti, A., Content, R., Daddi, E., Ferguson, H. C., Hirata, C., Hudson, M. J., Kirkpatrick, J. D., Orsi, A., Ryan, R., Shapley, A., Ballardini, M., , Barkhouser, R., et al. (2019). ATLAS probe: Breakthrough science of galaxy evolution, cosmology, Milky Way, and the Solar System. Publications of the Astronomical Society of Australia, 36, e015.
- Xhakaj, E., Leauthaud, A., Diemer, B., & Behroozi, P. (2019). Differences in Halo Mass Accretion Rate Definitions between SPARTA and Consistent Trees. Research Notes of the American Astronomical Society, 3(11), 169.
- Zaritsky, D., Behroozi, P., Peeples, M. S., Tuttle, S., Werk, J., & Zhang, H. (2019). Emission Line Mapping of the Circumgalactic Medium of Nearby Galaxies. Bulletin of the American Astronomical Society, 51(3), 127.
- Zhang, H., Yang, X., Zaritsky, D., Behroozi, P., & Werk, J. (2019). H$\alpha$ Emission and the Dependence of the Circumgalactic Cool Gas Fraction on Halo Mass. arXiv e-prints, arXiv:1911.02032.
- Zhang, H., Zaritsky, D., Behroozi, P., & Werk, J. (2019). On the Effect of Environment on Line Emission from the Circumgalactic Medium. Astrophysical Journal, 880(1), 28.
- Allen, M., Behroozi, P., & Ma, C. (2018). Constraining Scatter in the Stellar Mass--Halo Mass Relation for Haloes Less Massive than the Milky Way. arXiv e-prints.
- Behroozi, P., & Silk, J. (2018). The most massive galaxies and black holes allowed by $Lambda$CDM. mnras, 477, 5382-5387.
- Behroozi, P., Wechsler, R., Hearin, A., & Conroy, C. (2018). UniverseMachine: The Correlation between Galaxy Growth and Dark Matter Halo Assembly from z=0-10. arXiv e-prints.
- Fang, J., Faber, S., Koo, D., Rodr{'{i}guez-Puebla}, A., Guo, Y., Barro, G., Behroozi, P., Brammer, G., Chen, Z., Dekel, A., Ferguson, H., Gawiser, E., Giavalisco, M., Kartaltepe, J., Kocevski, D., Koekemoer, A., McGrath, E., McIntosh, D., Newman, J., , Pacifici, C., et al. (2018). Demographics of Star-forming Galaxies since z tilde 2.5. I. The UVJ Diagram in CANDELS. apj, 858, 100.
- Harikane, Y., Ouchi, M., Ono, Y., Saito, S., Behroozi, P., More, S., Shimasaku, K., Toshikawa, J., Lin, Y., Akiyama, M., Coupon, J., Komiyama, Y., Konno, A., Lin, S., Miyazaki, S., Nishizawa, A., Shibuya, T., & Silverman, J. (2018). "GOLDRUSH. II. Clustering of galaxies at z {tilde 4-6 revealed with the half-million dropouts over the 100 deg$^2$ area corresponding to 1 Gpc$^3$}". pasj, 70, S11.
- Huang, S., Leauthaud, A., Hearin, A., Behroozi, P., Bradshaw, C., Ardila, F., Speagle, J., Tenenti, A., Bundy, K., Greene, J., Sifon, C., & Bahcall, N. (2018). Weak Lensing Reveals a Tight Connection Between Dark Matter Halo Mass and the Distribution of Stellar Mass in Massive Galaxies. arXiv e-prints.
- Imara, N., Loeb, A., Johnson, B., Conroy, C., & Behroozi, P. (2018). "A Model Connecting Galaxy Masses, Star Formation Rates, and Dust Temperatures across Cosmic Time". apj, 854, 36.
- Knebe, A., Stoppacher, D., Prada, F., Behrens, C., Benson, A., Cora, S., Croton, D., Padilla, N., Ruiz, A., Sinha, M., Stevens, A., Vega-Mart{'{i}nez}, C., Behroozi, P., Gonzalez-Perez, V. .., Gottl{"ober}, S., Klypin, A., Yepes, G., Enke, H., Libeskind, N., , Riebe, K., et al. (2018). "MultiDark-Galaxies: data release and first results". MNRAS, 474(4), 5206-5231. doi:10.1093/mnras/stx2662
- Lee, C., Primack, J., Behroozi, P., Rodr{'{i}guez-Puebla}, A., Hellinger, D., & Dekel, A. (2018). Tidal stripping and post-merger relaxation of dark matter haloes: causes and consequences of mass-loss. mnras, 481, 4038-4057.
- Salcedo, A., Maller, A., Berlind, A., Sinha, M., McBride, C., Behroozi, P., Wechsler, R., & Weinberg, D. (2018). "Spatial Clustering of Dark Matter Halos: Secondary Bias, Neighbor Bias, and the Influence of Massive Neighbors on Halo Properties". MNRAS, 475(4), 4411-4423. doi:10.1093/mnras/sty109
- Somerville, R., Behroozi, P., Pandya, V., Dekel, A., Faber, S., Fontana, A., Koekemoer, A., Koo, D., P{'erez-Gonz'alez}, P., Primack, J., Santini, P., Taylor, E., & Wel, A. (2018). "The relationship between galaxy and dark matter halo size from z {tilde 3 to the present}". mnras, 473, 2714-2736.
- Wang, Y., Robberto, M., Dickinson, M., Ferguson, H., Hillenbrand, L., Fraser, W., Behroozi, P., Brinchmann, J., Cimatti, A., Content, R., Daddi, E., Hirata, C., Hudson, M., Kirkpatrick, J., Orsi, A., Ballardini, M., Barkhouser, R., Bartlett, J., Benjamin, R., , Chary, R., et al. (2018). "ATLAS Probe: Breakthrough Science of Galaxy Evolution, Cosmology, Milky Way, and the Solar System". ArXiv e-prints.
- Zhang, H., Zaritsky, D., & Behroozi, P. (2018). Emission from the Ionized Gaseous Halos of Low-redshift Galaxies and Their Neighbors. apj, 861, 34.
- Zhang, H., Zaritsky, D., Werk, J., & Behroozi, P. (2018). Emission Line Ratios for the Circumgalactic Medium and the ldquoBimodalrdquo Nature of Galaxies. apjl, 866, L4.
- Hearin, A., Campbell, D., Tollerud, E., Behroozi, P., Diemer, B., Goldbaum, N., Jennings, E., Leauthaud, A., Mao, Y., More, S., Parejko, J., Sinha, M., Sip{"ocz}, B., & Zentner, A. (2017). "Forward Modeling of Large-scale Structure: An Open-source Approach with Halotools". aj, 154, 190.
Proceedings Publications
- Besla, G., Huppenkothen, D., Lloyd-Ronning, N. .., Schneider, E., Behroozi, P., Burkhart, B., Chan, C., Jacobson, S., Morrison, S., Nam, N., Naoz, S., Peter, A., Ramirez-Ruiz, E. .., Abrahams, E., Bailin, J., Blecha, L., Bostroem, A., Bogdanovi{\'c}, T., Boylan-Kolchin, M. .., , Bellm, E., et al. (2019, sep). Training the Future Generation of Computational Researchers. In Bulletin of the American Astronomical Society, 51.
- Wang, Y., Dickinson, M., Hillenbrand, L., Robberto, M., Armus, L., Ballardini, M., Barkhouser, R., Bartlett, J., Behroozi, P., Benjamin, R. A., Brinchmann, J., Chary, R., Chuang, C., Cimatti, A., Conroy, C., Content, R., Daddi, E., Donahue, M., Dore, O., , Eisenhardt, P., et al. (2019, sep). ATLAS Probe: Breakthrough Science of Galaxy Evolution, Cosmology, Milky Way, and the Solar System. In Bulletin of the American Astronomical Society, 51.
- Content, R., Wang, Y., Roberto, M., Dickinson, M., Ferguson, H., Hillenbrand, L., Fraser, W., Behroozi, P., Brinchmann, J., Cimatti, A., Daddi, E., Hirata, C., Hudson, M., Kirkpatrick, J., Barkhouser, R., Bartlett, J., Benjamin, R., Chary, R., Conroy, C., , Donahue, M., et al. (2018, aug). ATLAS probe for the study of galaxy evolution with 300,000,000 galaxy spectra. In Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave, 10698.