Fei Yin
- Associate Professor, Pharmacology
- Assistant Research Scientist
- Assistant Director, Translational Neuroscience
- Member of the Graduate Faculty
- Associate Professor, Clinical Translational Sciences
- Associate Professor, Neuroscience - GIDP
Contact
- (520) 626-4102
- AHSC, Rm. 5103
- TUCSON, AZ 85724-5050
- feiyin@arizona.edu
Degrees
- M.S. Computer Science
- University of Southern California, Los Angeles, California, United States
- Ph.D. Pharmaceutical Sciences
- University of Southern California, Los Angeles, California, United States
- The Mitochondrial Energy – Redox Axis in Aging and Caloric Restriction: Role of Nicotinamide Nucleotide Transhydrogenase
- M.S. Regulatory Science
- University of Southern California, Los Angeles, California, United States
- B.S. Biochemistry
- Nanjing University, Nanjing, China
Work Experience
- University of Southern California, Los Angeles, California (2012 - 2017)
Awards
- ADRC REC Fellow
- Arizona Alzheimer's Disease Research Center, Fall 2021
- Arizona Alzheimer's Disease Research Center Research Education Component Scholar
- Fall 2021
- The BIO5 Institute Team Scholars Award
- The Bio5 Institute, University of Arizona, Summer 2019
Interests
No activities entered.
Courses
2024-25 Courses
-
Directed Research
PHCL 692 (Fall 2024) -
Research
PHCL 900 (Fall 2024)
2023-24 Courses
-
Directed Research
PHCL 692 (Spring 2024) -
Mol Targets Pharm Agents
PHCL 551A (Spring 2024) -
Neuropharmacolgy
PHCL 553 (Spring 2024) -
Research
CTS 900 (Spring 2024) -
Research
PHCL 900 (Spring 2024) -
Directed Research
PHCL 692 (Fall 2023) -
Dissertation
CTS 920 (Fall 2023) -
Research
PHCL 900 (Fall 2023)
2022-23 Courses
-
Directed Research
PHCL 692 (Spring 2023) -
Dissertation
PHCL 920 (Spring 2023) -
Mol Targets Pharm Agents
PHCL 551A (Spring 2023) -
Neuropharmacolgy
PHCL 553 (Spring 2023) -
Directed Research
PHCL 692 (Fall 2022) -
Research
NRSC 900 (Fall 2022)
2021-22 Courses
-
Mol Targets Pharm Agents
PHCL 551A (Spring 2022) -
Neuropharmacolgy
PHCL 553 (Spring 2022)
2020-21 Courses
-
Research
PHCL 900 (Summer I 2021) -
Mol Targets Pharm Agents
PHCL 551A (Spring 2021)
2019-20 Courses
-
Senior Capstone
BIOC 498 (Spring 2020) -
Methods In Neuroscience
NRSC 700 (Fall 2019) -
Senior Capstone
BIOC 498 (Fall 2019)
Scholarly Contributions
Books
- Yin, F., Yao, J., Cadenas, E., & Brinton, R. D. (2017). The Metabolic-Inflammatory Axis in Brain Aging and Neurodegeneration. Frontiers Media SA. doi:10.3389/978-2-88945-253-8
Journals/Publications
- Mi, Y., Qi, G., Vitali, F., Shang, Y., Raikes, A. C., Wang, T., Jin, Y., Brinton, R. D., Gu, H., & Yin, F. (2023). Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration. Nature metabolism, 5(3), 445-465.More infoAstrocytes provide key neuronal support, and their phenotypic transformation is implicated in neurodegenerative diseases. Metabolically, astrocytes possess low mitochondrial oxidative phosphorylation (OxPhos) activity, but its pathophysiological role in neurodegeneration remains unclear. Here, we show that the brain critically depends on astrocytic OxPhos to degrade fatty acids (FAs) and maintain lipid homeostasis. Aberrant astrocytic OxPhos induces lipid droplet (LD) accumulation followed by neurodegeneration that recapitulates key features of Alzheimer's disease (AD), including synaptic loss, neuroinflammation, demyelination and cognitive impairment. Mechanistically, when FA load overwhelms astrocytic OxPhos capacity, elevated acetyl-CoA levels induce astrocyte reactivity by enhancing STAT3 acetylation and activation. Intercellularly, lipid-laden reactive astrocytes stimulate neuronal FA oxidation and oxidative stress, activate microglia through IL-3 signalling, and inhibit the biosynthesis of FAs and phospholipids required for myelin replenishment. Along with LD accumulation and impaired FA degradation manifested in an AD mouse model, we reveal a lipid-centric, AD-resembling mechanism by which astrocytic mitochondrial dysfunction progressively induces neuroinflammation and neurodegeneration.
- Mishra, A., Wang, Y., Yin, F., Vitali, F., Rodgers, K. E., Soto, M., Mosconi, L., Wang, T., & Brinton, R. D. (2022). A tale of two systems: Lessons learned from female mid-life aging with implications for Alzheimer's prevention & treatment. Ageing research reviews, 74, 101542.More infoNeurological aging is frequently viewed as a linear process of decline, whereas in reality, it is a dynamic non-linear process. The dynamic nature of neurological aging is exemplified during midlife in the female brain. To investigate fundamental mechanisms of midlife aging that underlie risk for development of Alzheimer's disease (AD) in late life, we investigated the brain at greatest risk for the disease, the aging female brain. Outcomes of our research indicate that mid-life aging in the female is characterized by the emergence of three phases: early chronological (pre-menopause), endocrinological (peri-menopause) and late chronological (post-menopause) aging. The endocrinological aging program is sandwiched between early and late chronological aging. Throughout the three stages of midlife aging, two systems of biology, metabolic and immune, are tightly integrated through a network of signaling cascades. The network of signaling between these two systems of biology underlie an orchestrated sequence of adaptative starvation responses that shift the brain from near exclusive dependence on a single fuel, glucose, to utilization of an auxiliary fuel derived from lipids, ketone bodies. The dismantling of the estrogen control of glucose metabolism during mid-life aging is a critical contributor to the shift in fuel systems and emergence of dynamic neuroimmune phenotype. The shift in fuel reliance, puts the largest reservoir of local fatty acids, white matter, at risk for catabolism as a source of lipids to generate ketone bodies through astrocytic beta oxidation. APOE4 genotype accelerates the tipping point for emergence of the bioenergetic crisis. While outcomes derived from research conducted in the female brain are not directly translatable to the male brain, the questions addressed in a female centric program of research are directly applicable to investigation of the male brain. Like females, males with AD exhibit deficits in the bioenergetic system of the brain, activation of the immune system and hallmark Alzheimer's pathologies. The drivers and trajectory of mechanisms underlying neurodegeneration in the male brain will undoubtedly share common aspects with the female in addition to factors unique to the male. Preclinical and clinical evidence indicate that midlife endocrine aging can also be a transitional bridge to autoimmune disorders. Collectively, the data indicate that endocrinological aging is a critical period "tipping point" in midlife which can initiate emergence of the prodromal stage of late-onset-Alzheimer's disease. Interventions that target both immune and metabolic shifts that occur during midlife aging have the potential to alter the trajectory of Alzheimer's risk in late life. Further, to achieve precision medicine for AD, chromosomal sex is a critical variable to consider along with APOE genotype, other genetic risk factors and stage of disease.
- Yin, F. (2022). Lipid metabolism and Alzheimer's disease: clinical evidence, mechanistic link and therapeutic promise. The FEBS journal.More infoAlzheimer's disease (AD) is an age-associated neurodegenerative disorder with multifactorial etiology, intersecting genetic and environmental risk factors, and a lack of disease-modifying therapeutics. While the abnormal accumulation of lipids was described in the very first report of AD neuropathology, it was not until recent decades that lipid dyshomeostasis became a focus of AD research. Clinically, lipidomic and metabolomic studies have consistently shown alterations in the levels of various lipid classes emerging in early stages of AD brains. Mechanistically, decades of discovery research have revealed multifaceted interactions between lipid metabolism and key AD pathogenic mechanisms including amyloidogenesis, bioenergetic deficit, oxidative stress, neuroinflammation, and myelin degeneration. In the present review, converging evidence defining lipid dyshomeostasis in AD is summarized, followed by discussions on mechanisms by which lipid metabolism contributes to pathogenesis and modifies disease risk. Furthermore, lipid-targeting therapeutic strategies, and the modification of their efficacy by disease stage, ApoE status, and metabolic and vascular profiles, are reviewed.
- Liu, X., Li, X., Xia, B., Jin, X., Zou, Q., Zeng, Z., Zhao, W., Yan, S., Li, L., Yuan, S., Zhao, S., Dai, X., Yin, F., Cadenas, E., Liu, R. H., Zhao, B., Hou, M., Liu, Z., & Liu, X. (2021). High-fiber diet mitigates maternal obesity-induced cognitive and social dysfunction in the offspring via gut-brain axis. Cell metabolism, 33(5), 923-938.e6.More infoMaternal obesity has been reported to be related to neurodevelopmental disorders in the offspring. However, the underlying mechanisms and effective interventions remain unclear. This cross-sectional study with 778 children aged 7-14 years in China indicated that maternal obesity is strongly associated with children's lower cognition and sociality. Moreover, it has been demonstrated that maternal obesity in mice disrupted the behavior and gut microbiome in offspring, both of which were restored by a high-fiber diet in either dams or offspring via alleviating synaptic impairments and microglial maturation defects. Co-housing and feces microbiota transplantation experiments revealed a causal relationship between microbiota and behavioral changes. Moreover, treatment with the microbiota-derived short-chain fatty acids also alleviated the behavioral deficits in the offspring of obese dams. Together, our study indicated that the microbiota-metabolites-brain axis may underlie maternal obesity-induced cognitive and social dysfunctions and that high dietary fiber intake could be a promising intervention.
- Qi, G., Mi, Y., & Yin, F. (2021). Characterizing brain metabolic function ex vivo with acute mouse slice punches. STAR protocols, 2(2), 100559.More infoMitochondrial dysfunction and metabolic reprogramming are implicated in a variety of neurological disorders. Here, we present a protocol that enables complex profiling of brain metabolic function using acute mouse brain slices . Utilizing differential metabolic conditions, substrates, and inhibitors, this protocol can be broadly applied to determine metabolic shift or reprogramming upon genetic manipulations, pathological insults, or therapeutic interventions and could thus further the understanding of the dynamic role of energy metabolism in brain physiological function and diseases. For complete details on the use and execution of this protocol, please refer to Qi et al. (2021).
- Qi, G., Mi, Y., Shi, X., Gu, H., Brinton, R. D., & Yin, F. (2021). ApoE4 Impairs Neuron-Astrocyte Coupling of Fatty Acid Metabolism. Cell reports, 34(1), 108572.More infoAlzheimer's disease (AD) risk gene ApoE4 perturbs brain lipid homeostasis and energy transduction. However, the cell-type-specific mechanism of ApoE4 in modulating brain lipid metabolism is unclear. Here, we describe a detrimental role of ApoE4 in regulating fatty acid (FA) metabolism across neuron and astrocyte in tandem with their distinctive mitochondrial phenotypes. ApoE4 disrupts neuronal function by decreasing FA sequestering in lipid droplets (LDs). FAs in neuronal LDs are exported and internalized by astrocytes, with ApoE4 diminishing the transport efficiency. Further, ApoE4 lowers FA oxidation and leads to lipid accumulation in both astrocyte and the hippocampus. Importantly, diminished capacity of ApoE4 astrocytes in eliminating neuronal lipids and degrading FAs accounts for their compromised metabolic and synaptic support to neurons. Collectively, our findings reveal a mechanism of ApoE4 disruption to brain FA and bioenergetic homeostasis that could underlie the accelerated lipid dysregulation and energy deficits and increased AD risk for ApoE4 carriers.
- Ren, B., Wang, L., Shi, L., Jin, X., Liu, Y., Liu, R. H., Yin, F., Cadenas, E., Dai, X., Liu, Z., & Liu, X. (2021). Methionine restriction alleviates age-associated cognitive decline via fibroblast growth factor 21. Redox biology, 41, 101940.More infoMethionine restriction (MR) extends lifespan and delays the onset of aging-associated pathologies. However, the effect of MR on age-related cognitive decline remains unclear. Here, we find that a 3-month MR ameliorates working memory, short-term memory, and spatial memory in 15-month-old and 18-month-old mice by preserving synaptic ultrastructure, increasing mitochondrial biogenesis, and reducing the brain MDA level in aged mice hippocampi. Transcriptome data suggest that the receptor of fibroblast growth factor 21 (FGF21)-related gene expressions were altered in the hippocampi of MR-treated aged mice. MR increased FGF21 expression in serum, liver, and brain. Integrative modelling reveals strong correlations among behavioral performance, MR altered nervous structure-related genes, and circulating FGF21 levels. Recombinant FGF21 treatment balanced the cellular redox status, prevented mitochondrial structure damages, and upregulated antioxidant enzymes HO-1 and NQO1 expression by transcriptional activation of Nrf2 in SH-SY5Y cells. Moreover, knockdown of Fgf21 by i.v. injection of adeno-associated virus abolished the neuroprotective effects of MR in aged mice. In conclusion, the MR exhibited the protective effects against age-related behavioral disorders, which could be partly explained by activating circulating FGF21 and promoting mitochondrial biogenesis, and consequently suppressing the neuroinflammation and oxidative damages. These results demonstrate that FGF21 can be used as a potential nutritional factor in dietary restriction-based strategies for improving cognition associated with neurodegeneration disorders.
- Brinton, R. D., Hernandez, G. D., Mack, W. J., Schneider, L. S., Wang, Y., Yin, F., & Yin, F. (2020). Retrospective analysis of phytoSERM for management of menopause-associated vasomotor symptoms and cognitive decline: a pilot study on pharmacogenomic effects of mitochondrial haplogroup and APOE genotype on therapeutic efficacy.. Menopause (New York, N.Y.), 27(1), 57-65. doi:10.1097/gme.0000000000001418More infoPhytoSERM is a selective estrogen receptor beta (ERβ) modulator comprised of three phytoestrogens: genistein, daidzein, and S-equol. The PhytoSERM formulation promotes estrogenic action in the brain while largely inactive or inhibitory in reproductive tissue. A phase Ib/IIa clinical trial (ClinicalTrial.gov ID: NCT01723917) of PhytoSERM demonstrated safety and pharmacokinetics profile of PhytoSERM. While this study was not powered for efficacy analysis, we conducted a pilot, retrospective analysis to identify potential responders to PhytoSERM treatment, and to determine the optimal populations to pursue in a phase II clinical trial of efficacy of the PhytoSERM formulation..In this retrospective analysis involving 46 participants (n = 16, placebo; n = 18, 50 mg/d PhytoSERM; and n = 12, 100 mg/d PhytoSERM), the therapeutic effect of PhytoSERM was stratified by 2 genetic risk modulators for Alzheimer's disease: mitochondrial haplogroup and APOE genotype..Our retrospective responder analysis indicated that participants on 50 mg of daily PhytoSERM (PS50) for 12 weeks significantly reduced hot flash frequency compared with their baseline (mean [95% CI])-1.61, [-2.79, -0.42], P = 0.007). Participants on 50 mg of PhytoSERM also had significantly greater reduction in hot flash frequency at 12 weeks compared with the placebo group (-1.38, -0.17 [median PS50, median placebo], P = 0.04). Fifty milligrams of daily PhytoSERM also preserved cognitive function in certain aspects of verbal learning and executive function. Our analysis further suggests that mitochondrial haplogroup and APOE genotype can modify PhytoSERM response..Our data support a precision medicine approach for further development of PhytoSERM as a safe and effective alternative to hormone therapy for menopause-associated hot flash and cognitive decline. While definitive determination of PhytoSERM efficacy is limited by the small sample size, these data provide a reasonable rationale to extend analyses to a larger study set powered to address statistical significance.
- Liu, Z., Dai, X., Zhang, H., Shi, R., Hui, Y., Jin, X., Zhang, W., Wang, L., Wang, Q., Wang, D., Wang, J., Tan, X., Ren, B., Liu, X., Zhao, T., Wang, J., Pan, J., Yuan, T., Chu, C., , Lan, L., et al. (2020). Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nature communications, 11(1), 855.More infoCognitive decline is one of the complications of type 2 diabetes (T2D). Intermittent fasting (IF) is a promising dietary intervention for alleviating T2D symptoms, but its protective effect on diabetes-driven cognitive dysfunction remains elusive. Here, we find that a 28-day IF regimen for diabetic mice improves behavioral impairment via a microbiota-metabolites-brain axis: IF enhances mitochondrial biogenesis and energy metabolism gene expression in hippocampus, re-structures the gut microbiota, and improves microbial metabolites that are related to cognitive function. Moreover, strong connections are observed between IF affected genes, microbiota and metabolites, as assessed by integrative modelling. Removing gut microbiota with antibiotics partly abolishes the neuroprotective effects of IF. Administration of 3-indolepropionic acid, serotonin, short chain fatty acids or tauroursodeoxycholic acid shows a similar effect to IF in terms of improving cognitive function. Together, our study purports the microbiota-metabolites-brain axis as a mechanism that can enable therapeutic strategies against metabolism-implicated cognitive pathophysiologies.
- Mi, Y., Qi, G., Brinton, R. D., & Yin, F. (2020). Mitochondria-Targeted Therapeutics for Alzheimer's Disease: The Good, the Bad, the Potential. Antioxidants & redox signaling.More infoAlzheimer's disease (AD) is the leading cause of dementia. Thus far, 99.6% of clinical trials, including those targeting energy metabolism, have failed to exert disease-modifying efficacy. Altered mitochondrial function and disruption to the brain bioenergetic system have long-been documented as early events during the pathological progression of AD. While therapeutic approaches that directly promote mitochondrial bioenergetic machinery or eliminate reactive oxygen species have exhibited limited translatability, emerging strategies targeting nonenergetic aspects of mitochondria provide novel therapeutic targets with the potential to modify AD risk and progression. Growing evidence also reveals a critical link between mitochondrial phenotype and neuroinflammation metabolic reprogramming of glial cells. Herein, we summarize major classes of mitochondrion-centered AD therapeutic strategies. In addition, the discrepancy in their efficacy when translated from preclinical models to clinical trials is addressed. Key factors that differentiate the responsiveness to bioenergetic interventions, including sex, apolipoprotein E genotype, and cellular diversity in the brain, are discussed. We propose that the future development of mitochondria-targeted AD therapeutics should consider the interactions between bioenergetics and other disease mechanisms, which may require cell-type-specific targeting to distinguish neurons and non-neuronal cells. Moreover, a successful strategy will likely include stratification by metabolic phenotype, which varies by sex and genetic risk profile and dynamically changes throughout the course of disease. As the network of mitochondrial integration expands across intracellular and systems level biology, assessment of intended, the good, unintended consequences, the bad, will be required to reach the potential of mitochondrial therapeutics.
- Mishra, A., Shang, Y., Wang, Y., Bacon, E. R., Yin, F., & Brinton, R. D. (2020). Dynamic Neuroimmune Profile during Mid-life Aging in the Female Brain and Implications for Alzheimer Risk. iScience, 23(12), 101829.More infoAging and endocrine transition states can significantly impact inflammation across organ systems. Neuroinflammation is well documented in Alzheimer disease (AD). Herein, we investigated neuroinflammation that emerges during mid-life aging, chronological and endocrinological, in the female brain as an early initiating mechanism driving AD risk later in life. Analyses were conducted in a translational rodent model of mid-life chronological and endocrinological aging followed by validation in transcriptomic profiles from women versus age-matched men. In the translational model, the neuroinflammatory profile of mid-life aging in females was endocrine and chronological state specific, dynamic, anatomically distributed, and persistent. Microarray dataset analyses of aging human hippocampus indicated a sex difference in neuroinflammatory profile in which women exhibited a profile comparable to the pattern discovered in our translational rodent model, whereas age-matched men exhibited a profile consistent with low neuroimmune activation. Translationally, these findings have implications for therapeutic interventions during mid-life to decrease late-onset AD risk.
- Romani, A., Yin, F., Trentini, A., Bonaccorsi, G., Cervellati, C., & Brinton, R. D. (2020). Brain and serum cholesterol dyshomeostasis during the perimenopausal transition: A possible risk factor for Alzheimer’s disease. Gynecological and Reproductive Endocrinology and Metabolism, 1(3), 192-201.
- Wang, Y., Hernandez, G., Mack, W. J., Schneider, L. S., Yin, F., & Brinton, R. D. (2020). Retrospective analysis of phytoSERM for management of menopause-associated vasomotor symptoms and cognitive decline: a pilot study on pharmacogenomic effects of mitochondrial haplogroup and APOE genotype on therapeutic efficacy. Menopause (New York, N.Y.), 27(1), 57-65.More infoPhytoSERM is a selective estrogen receptor beta (ERβ) modulator comprised of three phytoestrogens: genistein, daidzein, and S-equol. The PhytoSERM formulation promotes estrogenic action in the brain while largely inactive or inhibitory in reproductive tissue. A phase Ib/IIa clinical trial (ClinicalTrial.gov ID: NCT01723917) of PhytoSERM demonstrated safety and pharmacokinetics profile of PhytoSERM. While this study was not powered for efficacy analysis, we conducted a pilot, retrospective analysis to identify potential responders to PhytoSERM treatment, and to determine the optimal populations to pursue in a phase II clinical trial of efficacy of the PhytoSERM formulation.
- Wang, Y., Shang, Y., Mishra, A., Bacon, E., Yin, F., & Brinton, R. (2020). Midlife Chronological and Endocrinological Transitions in Brain Metabolism: System Biology Basis for Increased Alzheimer's Risk in Female Brain. Scientific reports, 10(1), 8528.More infoDecline in brain glucose metabolism is a hallmark of late-onset Alzheimer's disease (LOAD). Comprehensive understanding of the dynamic metabolic aging process in brain can provide insights into windows of opportunities to promote healthy brain aging. Chronological and endocrinological aging are associated with brain glucose hypometabolism and mitochondrial adaptations in female brain. Using a rat model recapitulating fundamental features of the human menopausal transition, results of transcriptomic analysis revealed stage-specific shifts in bioenergetic systems of biology that were paralleled by bioenergetic dysregulation in midlife aging female brain. Transcriptomic profiles were predictive of outcomes from unbiased, discovery-based metabolomic and lipidomic analyses, which revealed a dynamic adaptation of the aging female brain from glucose centric to utilization of auxiliary fuel sources that included amino acids, fatty acids, lipids, and ketone bodies. Coupling between brain and peripheral metabolic systems was dynamic and shifted from uncoupled to coupled under metabolic stress. Collectively, these data provide a detailed profile across transcriptomic and metabolomic systems underlying bioenergetic function in brain and its relationship to peripheral metabolic responses. Mechanistically, these data provide insights into the complex dynamics of chronological and endocrinological bioenergetic aging in female brain. Translationally, these findings are predictive of initiation of the prodromal / preclinical phase of LOAD for women in midlife and highlight therapeutic windows of opportunity to reduce the risk of late-onset Alzheimer's disease.
- Bacon, E. R., Mishra, A., Wang, Y., Desai, M. K., Yin, F., & Brinton, R. D. (2019). Neuroendocrine aging precedes perimenopause and is regulated by DNA methylation. Neurobiology of aging, 74, 213-224.More infoPerimenopause marks initiation of female reproductive senescence. Age of onset is only 47% heritable suggesting that additional factors other than inheritance regulate this endocrine aging transition. To elucidate these factors, we characterized transcriptional and epigenomic changes across endocrine aging using a rat model that recapitulates characteristics of the human perimenopause. RNA-seq analysis revealed that hypothalamic aging precedes onset of perimenopause. In the hypothalamus, global DNA methylation declined with both age and reproductive senescence. Genome-wide epigentic analysis revealed changes in DNA methylation in genes required for hormone signaling, glutamate signaling, and melatonin and circadian pathways. Specific epignetic changes in these signaling pathways provide insight into the origin of perimenopause-associated neurological symptoms such as insomnia. Treatment with 5-aza-2'-deoxycytidine, a DNA-methyltransferase-1 inhibitor, accelerated transition to reproductive senescence/ whereas supplementation with methionine, a S-adenosylmethionine precursor, delayed onset of perimenopause and endocrine aging. Collectively, these data provide evidence for a critical period of female neuroendocrine aging in brain that precedes ovarian failure and that DNA methylation regulates the transition duration of perimenopause to menopause.
- Qi, G., Mi, Y., & Yin, F. (2019). Cellular Specificity and Inter-cellular Coordination in the Brain Bioenergetic System: Implications for Aging and Neurodegeneration. Frontiers in physiology, 10, 1531.More infoAs an organ with a highly heterogenous cellular composition, the brain has a bioenergetic system that is more complex than peripheral tissues. Such complexities are not only due to the diverse bioenergetic phenotypes of a variety of cell types that differentially contribute to the metabolic profile of the brain, but also originate from the bidirectional metabolic communications and coupling across cell types. While brain energy metabolism and mitochondrial function have been extensively investigated in aging and age-associated neurodegenerative disorders, the role of various cell types and their inter-cellular communications in regulating brain metabolic and synaptic functions remains elusive. In this review, we summarize recent advances in differentiating bioenergetic phenotypes of neurons, astrocytes, and microglia in the context of their functional specificity, and their metabolic shifts upon aging and pathological conditions. Moreover, the metabolic coordination between the two most abundant cell populations in brain, neurons and astrocytes, is discussed regarding how they jointly establish a dynamic and responsive system to maintain brain bioenergetic homeostasis and to combat against threats such as oxidative stress, lipid toxicity, and neuroinflammation. Elucidating the mechanisms by which brain cells with distinctive bioenergetic phenotypes individually and collectively shape the bioenergetic system of the brain will provide rationale for spatiotemporally precise interventions to sustain a metabolic equilibrium that is resilient against synaptic dysfunction in aging and neurodegeneration.
- Liu, Z., Patil, I., Sancheti, H., Yin, F., & Cadenas, E. (2017). Effects of Lipoic Acid on High-Fat Diet-Induced Alteration of Synaptic Plasticity and Brain Glucose Metabolism: A PET/CT and C-NMR Study. Scientific reports, 7(1), 5391.More infoHigh-fat diet (HFD)-induced obesity is accompanied by insulin resistance and compromised brain synaptic plasticity through the impairment of insulin-sensitive pathways regulating neuronal survival, learning, and memory. Lipoic acid is known to modulate the redox status of the cell and has insulin mimetic effects. This study was aimed at determining the effects of dietary administration of lipoic acid on a HFD-induced obesity model in terms of (a) insulin signaling, (b) brain glucose uptake and neuronal- and astrocytic metabolism, and (c) synaptic plasticity. 3-Month old C57BL/6J mice were divided into 4 groups exposed to their respective treatments for 9 weeks: (1) normal diet, (2) normal diet plus lipoic acid, (3) HFD, and (4) HFD plus lipoic acid. HFD resulted in higher body weight, development of insulin resistance, lower brain glucose uptake and glucose transporters, alterations in glycolytic and acetate metabolism in neurons and astrocytes, and ultimately synaptic plasticity loss evident by a decreased long-term potentiation (LTP). Lipoic acid treatment in mice on HFD prevented several HFD-induced metabolic changes and preserved synaptic plasticity. The metabolic and physiological changes in HFD-fed mice, including insulin resistance, brain glucose uptake and metabolism, and synaptic function, could be preserved by the insulin-like effect of lipoic acid.
- Yin, F., Yao, J., Brinton, R. D., & Cadenas, E. (2017). Editorial: The Metabolic-Inflammatory Axis in Brain Aging and Neurodegeneration. Frontiers in aging neuroscience, 9, 209.
- Yin, F., Sancheti, H., Liu, Z., & Cadenas, E. (2016). Mitochondrial function in ageing: coordination with signalling and transcriptional pathways. The Journal of physiology, 594(8), 2025-42.More infoMitochondrial dysfunction entailing decreased energy-transducing capacity and perturbed redox homeostasis is an early and sometimes initiating event in ageing and age-related disorders involving tissues with high metabolic rate such as brain, liver and heart. In the central nervous system (CNS), recent findings from our and other groups suggest that the mitochondrion-centred hypometabolism is a key feature of ageing brains and Alzheimer's disease. This hypometabolic state is manifested by lowered neuronal glucose uptake, metabolic shift in the astrocytes, and alternations in mitochondrial tricarboxylic acid cycle function. Similarly, in liver and adipose tissue, mitochondrial capacity around glucose and fatty acid metabolism and thermogenesis is found to decline with age and is implicated in age-related metabolic disorders such as obesity and type 2 diabetes mellitus. These mitochondrion-related disorders in peripheral tissues can impact on brain functions through metabolic, hormonal and inflammatory signals. At the cellular level, studies in CNS and non-CNS tissues support the notion that instead of being viewed as autonomous organelles, mitochondria are part of a dynamic network with close interactions with other cellular components through energy- or redox-sensitive cytosolic kinase signalling and transcriptional pathways. Hence, it would be critical to further understand the molecular mechanisms involved in the communication between mitochondria and the rest of the cell. Therapeutic strategies that effectively preserves or improve mitochondrial function by targeting key component of these signalling cascades could represent a novel direction for numerous mitochondrion-implicated, age-related disorders.
- Yin, F., Sancheti, H., Patil, I., & Cadenas, E. (2016). Energy metabolism and inflammation in brain aging and Alzheimer's disease. Free radical biology & medicine, 100, 108-122.More infoThe high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer's disease. As important cellular sources of HO, mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer's disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer's disease. Interaction of these systems is reviewed based on basic research and clinical studies.
- Brinton, R. D., Yao, J., Yin, F., Mack, W. J., & Cadenas, E. (2015). Perimenopause as a neurological transition state. Nature reviews. Endocrinology, 11(7), 393-405.More infoPerimenopause is a midlife transition state experienced by women that occurs in the context of a fully functioning neurological system and results in reproductive senescence. Although primarily viewed as a reproductive transition, the symptoms of perimenopause are largely neurological in nature. Neurological symptoms that emerge during perimenopause are indicative of disruption in multiple estrogen-regulated systems (including thermoregulation, sleep, circadian rhythms and sensory processing) and affect multiple domains of cognitive function. Estrogen is a master regulator that functions through a network of estrogen receptors to ensure that the brain effectively responds at rapid, intermediate and long timescales to regulate energy metabolism in the brain via coordinated signalling and transcriptional pathways. The estrogen receptor network becomes uncoupled from the bioenergetic system during the perimenopausal transition and, as a corollary, a hypometabolic state associated with neurological dysfunction can develop. For some women, this hypometabolic state might increase the risk of developing neurodegenerative diseases later in life. The perimenopausal transition might also represent a window of opportunity to prevent age-related neurological diseases. This Review considers the importance of neurological symptoms in perimenopause in the context of their relationship to the network of estrogen receptors that control metabolism in the brain.
- Klosinski, L. P., Yao, J., Yin, F., Fonteh, A. N., Harrington, M. G., Christensen, T. A., Trushina, E., & Brinton, R. D. (2015). White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease. EBioMedicine, 2(12), 1888-904.More infoWhite matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical.
- Liu, Z., Patil, I. Y., Jiang, T., Sancheti, H., Walsh, J. P., Stiles, B. L., Yin, F., & Cadenas, E. (2015). High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity. PloS one, 10(5), e0128274.More infoHigh-fat diet (HFD)-induced obesity is associated with insulin resistance, which may affect brain synaptic plasticity through impairment of insulin-sensitive processes underlying neuronal survival, learning, and memory. The experimental model consisted of 3 month-old C57BL/6J mice fed either a normal chow diet (control group) or a HFD (60% of calorie from fat; HFD group) for 12 weeks. This model was characterized as a function of time in terms of body weight, fasting blood glucose and insulin levels, HOMA-IR values, and plasma triglycerides. IRS-1/Akt pathway was assessed in primary hepatocytes and brain homogenates. The effect of HFD in brain was assessed by electrophysiology, input/output responses and long-term potentiation. HFD-fed mice exhibited a significant increase in body weight, higher fasting glucose- and insulin levels in plasma, lower glucose tolerance, and higher HOMA-IR values. In liver, HFD elicited (a) a significant decrease of insulin receptor substrate (IRS-1) phosphorylation on Tyr608 and increase of Ser307 phosphorylation, indicative of IRS-1 inactivation; (b) these changes were accompanied by inflammatory responses in terms of increases in the expression of NFκB and iNOS and activation of the MAP kinases p38 and JNK; (c) primary hepatocytes from mice fed a HFD showed decreased cellular oxygen consumption rates (indicative of mitochondrial functional impairment); this can be ascribed partly to a decreased expression of PGC1α and mitochondrial biogenesis. In brain, HFD feeding elicited (a) an inactivation of the IRS-1 and, consequentially, (b) a decreased expression and plasma membrane localization of the insulin-sensitive neuronal glucose transporters GLUT3/GLUT4; (c) a suppression of the ERK/CREB pathway, and (d) a substantial decrease in long-term potentiation in the CA1 region of hippocampus (indicative of impaired synaptic plasticity). It may be surmised that 12 weeks fed with HFD induce a systemic insulin resistance that impacts profoundly on brain activity, i.e., synaptic plasticity.
- Yin, F., & Cadenas, E. (2015). Mitochondria: the cellular hub of the dynamic coordinated network. Antioxidants & redox signaling, 22(12), 961-4.More infoMitochondria are the powerhouses of the eukaryotic cell. After billions of years of evolution, mitochondria have adaptively integrated into the symbiont. Such integration is not only evidenced by the consolidation of genetic information, that is, the transfer of most mitochondrial genes into the nucleus, but also manifested by the functional recombination by which mitochondria participate seamlessly in various cellular processes. In the past decade, the field of mitochondria biology has been focused on the dynamic and interactive features of these semiautonomous organelles. Aspects of a complex multilayer quality control system coordinating mitochondrial function and environmental changes are being uncovered and refined. This Forum summarizes the recent progress of these critical topics, with a focus on the dynamic quality control of mitochondrial reticulum, including their biogenesis, dynamic remodeling, and degradation, as well as the homeostasis of the mitochondrial proteome. These diverse but interconnected mechanisms are found to be critical in the maintenance of a functional, efficient, and responsive mitochondrial population and could therefore become therapeutic targets in numerous mitochondrion-implicated disorders.
- Yin, F., Yao, J., Sancheti, H., Feng, T., Melcangi, R. C., Morgan, T. E., Finch, C. E., Pike, C. J., Mack, W. J., Cadenas, E., & Brinton, R. D. (2015). The perimenopausal aging transition in the female rat brain: decline in bioenergetic systems and synaptic plasticity. Neurobiology of aging, 36(7), 2282-2295.More infoThe perimenopause is an aging transition unique to the female that leads to reproductive senescence which can be characterized by multiple neurological symptoms. To better understand potential underlying mechanisms of neurological symptoms of perimenopause, the present study determined genomic, biochemical, brain metabolic, and electrophysiological transformations that occur during this transition using a rat model recapitulating fundamental characteristics of the human perimenopause. Gene expression analyses indicated two distinct aging programs: chronological and endocrine. A critical period emerged during the endocrine transition from regular to irregular cycling characterized by decline in bioenergetic gene expression, confirmed by deficits in fluorodeoxyglucose-positron emission tomography (FDG-PET) brain metabolism, mitochondrial function, and long-term potentiation. Bioinformatic analysis predicted insulin/insulin-like growth factor 1 and adenosine monophosphate-activated protein kinase/peroxisome proliferator-activated receptor gamma coactivator 1 alpha (AMPK/PGC1α) signaling pathways as upstream regulators. Onset of acyclicity was accompanied by a rise in genes required for fatty acid metabolism, inflammation, and mitochondrial function. Subsequent chronological aging resulted in decline of genes required for mitochondrial function and β-amyloid degradation. Emergence of glucose hypometabolism and impaired synaptic function in brain provide plausible mechanisms of neurological symptoms of perimenopause and may be predictive of later-life vulnerability to hypometabolic conditions such as Alzheimer's.