
Jeffrey J Rodriguez
- Associate Professor, Electrical and Computer Engineering
- Associate Professor, Biomedical Engineering
- Member of the Graduate Faculty
Contact
- (520) 621-8732
- Electrical & Computer Engr, Rm. 556B
- Tucson, AZ 85721
- jjrodrig@arizona.edu
Biography
Jeffrey J. Rodríguez (M’90–SM’02) received the B.S. and Ph.D. degrees from The University of Texas at Austin in 1984 and 1990, respectively, and the M.S. degree from the Massachusetts Institute of Technology in 1986, all in electrical engineering.,Since 1990, he has been a faculty member with the Department of Electrical and Computer Engineering, The University of Arizona, Tucson, where he is currently the Director of the Signal and Image Laboratory. His research area includes signal/image/video processing and analysis, with a particular emphasis on automated image analysis. From 2003 to 2008, he was the Co-Director of Connection One, a National Science Foundation research center. From 2005 to 2011, he served on the IEEE Signal Processing Society Technical Committee on Image, Video, and Multidimensional Signal Processing. He has served on the organizing committees for numerous other technical conferences.,Dr. Rodriguez served as the General Chair for the 2016 IEEE Southwest Symposium on Image Analysis and Interpretation and the 2007 IEEE International Conference on Image Processing. From 1996 to 2000, he was an Associate Editor of the IEEE Transactions on Image Processing. |
Awards
- Best Poster Award
- American Otological Society, Summer 2016
Interests
No activities entered.
Courses
2024-25 Courses
-
Digital Image Processing
ECE 533 (Spring 2025) -
Digital Image Processing
OPTI 533 (Spring 2025) -
Dissertation
ECE 920 (Spring 2025) -
Circuit Theory
ECE 320A (Fall 2024) -
Digital Signal Proc
ECE 429 (Fall 2024) -
Digital Signal Proc
ECE 529 (Fall 2024) -
Dissertation
ECE 920 (Fall 2024)
2023-24 Courses
-
Circuit Theory
ECE 320A (Spring 2024) -
Dissertation
ECE 920 (Spring 2024) -
Circuit Theory
ECE 320A (Fall 2023) -
Digital Signal Proc
ECE 429 (Fall 2023) -
Digital Signal Proc
ECE 529 (Fall 2023) -
Dissertation
ECE 920 (Fall 2023)
2022-23 Courses
-
Circuit Theory
ECE 320A (Spring 2023) -
Digital Image Analysis
ECE 532 (Spring 2023) -
Digital Image Analysis
OPTI 532 (Spring 2023) -
Dissertation
ECE 920 (Spring 2023) -
Thesis
ECE 910 (Spring 2023) -
Circuit Theory
ECE 320A (Fall 2022) -
Digital Signal Proc
ECE 429 (Fall 2022) -
Digital Signal Proc
ECE 529 (Fall 2022) -
Dissertation
ECE 920 (Fall 2022) -
Thesis
ECE 910 (Fall 2022)
2021-22 Courses
-
Internship
ECE 593 (Summer I 2022) -
Digital Image Processing
ECE 533 (Spring 2022) -
Dissertation
ECE 920 (Spring 2022) -
Thesis
ECE 910 (Spring 2022) -
Circuit Theory
ECE 320A (Fall 2021) -
Digital Signal Proc
ECE 429 (Fall 2021) -
Digital Signal Proc
ECE 529 (Fall 2021) -
Dissertation
ECE 920 (Fall 2021) -
Thesis
ECE 910 (Fall 2021)
2020-21 Courses
-
Circuit Theory
ECE 320A (Spring 2021) -
Digital Image Processing
ECE 533 (Spring 2021) -
Digital Image Processing
OPTI 533 (Spring 2021) -
Dissertation
ECE 920 (Spring 2021) -
Circuit Theory
ECE 320A (Fall 2020) -
Digital Image Analysis
ECE 532 (Fall 2020) -
Digital Image Analysis
OPTI 532 (Fall 2020) -
Dissertation
ECE 920 (Fall 2020)
2019-20 Courses
-
Circuit Theory
ECE 320A (Spring 2020) -
Digital Image Processing
ECE 533 (Spring 2020) -
Dissertation
ECE 920 (Spring 2020) -
Digital Image Analysis
ECE 532 (Fall 2019) -
Digital Image Analysis
OPTI 532 (Fall 2019) -
Digital Signal Proc
ECE 429 (Fall 2019) -
Digital Signal Proc
ECE 529 (Fall 2019) -
Dissertation
ECE 920 (Fall 2019)
2018-19 Courses
-
Dissertation
ECE 920 (Spring 2019) -
Dissertation
ECE 920 (Fall 2018)
2017-18 Courses
-
Internship
ECE 593 (Summer I 2018) -
Digital Image Processing
ECE 533 (Spring 2018) -
Digital Image Processing
OPTI 533 (Spring 2018) -
Digital Signal Proc
ECE 429 (Spring 2018) -
Digital Signal Proc
ECE 529 (Spring 2018) -
Dissertation
ECE 920 (Spring 2018) -
Independent Study
ECE 599 (Spring 2018) -
Research
ECE 900 (Spring 2018) -
Circuit Theory
ECE 320A (Fall 2017) -
Dissertation
ECE 920 (Fall 2017)
2016-17 Courses
-
Internship
ECE 593 (Summer I 2017) -
Digital Signal Proc
ECE 429 (Spring 2017) -
Digital Signal Proc
ECE 529 (Spring 2017) -
Dissertation
ECE 920 (Spring 2017) -
Research
ECE 900 (Spring 2017) -
Thesis
ECE 910 (Spring 2017) -
Circuit Theory
ECE 320A (Fall 2016) -
Digital Image Analysis
ECE 532 (Fall 2016) -
Digital Image Analysis
OPTI 532 (Fall 2016) -
Dissertation
ECE 920 (Fall 2016) -
Research
ECE 900 (Fall 2016)
2015-16 Courses
-
Internship
ECE 593 (Summer I 2016) -
Thesis
ECE 910 (Summer I 2016) -
Digital Signal Proc
ECE 429 (Spring 2016) -
Digital Signal Proc
ECE 529 (Spring 2016) -
Dissertation
ECE 920 (Spring 2016) -
Research
ECE 900 (Spring 2016) -
Thesis
ECE 910 (Spring 2016)
Scholarly Contributions
Journals/Publications
- Gao, X. (2020). A post-processing scheme for the performance improvement of vehicle detection in wide-area aerial imagery. Signal, Image and Video Processing, 14(3), 625-633.
- Gao, X., Szep, J., Satam, P., Hariri, S., Ram, S., & Rodríguez, J. J. (2020). Spatio-Temporal Processing for Automatic Vehicle Detection in Wide-Area Aerial Video. IEEE Access, 8, 199562-199572.
- Majdi, M. S., Keerthivasan, M. B., Rutt, B. K., Zahr, N. M., Rodriguez, J. J., & Saranathan, M. (2020). Automated thalamic nuclei segmentation using multi-planar cascaded convolutional neural networks. Magnetic Resonance Imaging, 73, 45-54.
- Malladi, S., Ram, S., & Rodriguez, J. J. (2020). Image Denoising Using Superpixel-Based PCA. IEEE Transactions on Multimedia, 1-1.
- Behkam, R., Kollech, H. G., Jana, A., Hill, A., Danford, F., Howerton, S., Ram, S., Rodríguez, J. J., Utzinger, U., Girkin, C. A., & Geest, J. (2019). Racioethnic differences in the biomechanical response of the lamina cribrosa. Acta Biomaterialia, 88, 131-140.
- Ding, D., Ram, S., & Rodríguez, J. J. (2019). Image Inpainting Using Nonlocal Texture Matching and Nonlinear Filtering. IEEE Transactions on Image Processing, 28(4), 1705-1719.
- Ding, D., Ram, S., & Rodriguez, J. J. (2018). Perceptually aware image inpainting. Pattern Recognition, 83, 174-184.
- Philip, R. C., Rodriguez, J. J., Niihori, M., Francis, R. H., Mudery, J. A., Caskey, J. S., Krupinski, E., & Jacob, A. (2018). Automated High-Throughput Damage Scoring of Zebrafish Lateral Line Hair Cells After Ototoxin Exposure. Zebrafish, 15(2), 145-155.
- Savage, R., Palafox, L. F., Morrison, C. T., Rodriguez, J. J., Barnard, K., Byrne, S., & Hamilton, C. W. (2018). A Bayesian Approach to Subkilometer Crater Shape Analysis Using Individual HiRISE Images. IEEE Transactions on Geoscience and Remote Sensing, 56(10), 5802-5812.
- Song, B., Sunny, S., Uthoff, R. D., Patrick, S., Suresh, A., Kolur, T., Keerthi, G., Anbarani, A., Wilder-Smith, P., Kuriakose, M. A., Birur, P., Rodriguez, J. J., & Liang, R. (2018). Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning. Biomed. Opt. Express, 9(11), 5318--5329.
- Rodriguez, J. J. (2017). Segmentation of the right ventricle in four chamber cine cardiac MR images using polar dynamic programming. Computerized Medical Imaging and Graphics, 62, 15-25.
- Todd, D. W., Philip, R. C., Niihori, M., Ringle, R. A., Coyle, K. R., Zehri, S. F., Zabala, L., Mudery, J. A., Francis, R. H., Rodriguez, J. J., & Jacob, A. (2017). A Fully Automated High-Throughput Zebrafish Behavioral Ototoxicity Assay. Zebrafish, 14(4), 331-342.
- Jha, A. K., Rodriguez, J. J., & Stopeck, A. T. (2016). A Maximum-Likelihood Method to Estimate a Single ADC Value of Lesions Using Diffusion MRI. Magnetic Resonance in Medicine, 76(6), 1919-1931.
- Ram, S., & Rodriguez, J. J. (2016). Size-Invariant Detection of Cell Nuclei in Microscopy Images. IEEE Trans. on Medical Imaging, 35(7), 1753-1764. doi:10.1109/TMI.2016.2527740
- Rodriguez, J. J. (2016). Dynamic Programming Using Polar Variance for Image Segmentation. IEEE Trans. on Image Processing, 25(12), 5857-5866.
- Salahieh, B., Rodriguez, J. J., Stetson, S., & Liang, R. (2016). Single-Image Full-Focus Reconstruction Using Depth-Based Deconvolution. Optical Engineering, 56(4), 041302.01-10. doi:10.1117/1.OE.56.4.041302
- Jayadevan, V. T., Rodriguez, J. J., & Cronin, A. D. (2015). A New Contrast Enhancing Feature for Cloud Detection in Ground-Based Sky Images. Journal of Atmospheric and Oceanic Technology, 32(2), 209-219. doi:10.1175/JTECH-D-14-00053.1
- Pacheco, S., Salahieh, B., Milster, T. D., Rodriguez, J. J., & Liang, R. (2015). Transfer Function Analysis in Epi-Illumination Fourier Ptychography. Optics Letters, 40(22), 5343-5346.
- Rosado-Toro, J. A., Barr, T., Galons, J., Marron, M. T., Stopeck, A., Thomson, C., Thompson, P., Caroll, D., Wolf, E., Altbach, M. I., & Rodriguez, J. J. (2015). Automated Breast Segmentation of Fat and Water MR Images Using Dynamic Programming. Academic Radiology, 22(2), 139-148. doi:10.1016/j.acra.2014.09.015
- Salahieh, B., Rodriguez, J. J., & Liang, R. (2015). Direct Superresolution for Realistic Image Reconstruction. Optics Express, 23(20), 26124-26138. doi:10.1364/OE.23.026124
- Stephen, R. M., Roe, D. J., Jha, A. K., Trouard, T. P., Galons, J., Kupinski, M. A., Frey, G., Cui, H., Squire, S., Pagel, M. D., Rodriguez, J. J., Gillies, R. J., & Stopeck, A. T. (2015). Diffusion MRI with Semi-Automated Segmentation Can Serve as a Restricted Predictive Biomarker of the Therapeutic Response of Liver Metastasis. Magnetic Resonance Imaging. doi:10.1016/j.mri.2015.08.006
- Huang, J. L., & Rodriguez, J. J. (2014). Non-Rigid Registration Using Gradient of Self-Similarity Response. Image and Vision Computing, 32(11), 825-834. doi:10.1016/j.imavis.2014.06.005
- Salahieh, B., Rodriguez, J. J., & Liang, R. (2014). Multi-Polarization Fringe Projection Imaging for High Dynamic Range Objects. Optics Express, 22(8), 10064-10071. doi:10.1364/OE.22.010064
- Jha, A. K., Kupinski, M. A., Rodriguez, J. J., & Stopeck, A. T. (2013). Corrigendum: Task-Based Evaluation of Segmentation Algorithms for Diffusion-Weighted MRI without Using a Gold Standard. Physics in Medicine and Biology, 58(1), 183. doi:10.1088/0031-9155/58/1/183
- Jha, A. K., Kupinski, M. A., Rodriguez, J. J., Stephen, R. M., & Stopeck, A. T. (2012). Task-Based Evaluation of Segmentation Algorithms for Diffusion-Weighted MRI without Using a Gold Standard. Physics in Medicine and Biology, 57(13), 4425-4446.
- Naik, S. L., Rodriguez, J. J., Kalra, N., & Sorrell, V. L. (2012). Tricuspid Annular Plane Systolic Excursion (TAPSE) Revisited Using CMR. Journal of Cardiovascular Magnetic Resonance, 14(Suppl 1), 299.
- Ram, S., Rodriguez, J. J., & Bosco, G. (2012). Segmentation and Detection of Fluorescent 3D Spots. Cytometry: Part A, 81A(3), 198-212.
- Watson, J. M., Rice, P. F., Marion, S. L., Brewer, M. A., Davis, J. R., Rodriguez, J. J., Utzinger, U., Hoyer, P. B., & Bartona, J. K. (2012). Analysis of second-harmonic-generation microscopy in a mouse model of ovarian carcinoma. Journal of Biomedical Optics, 17(7).More infoPMID: 22894485;PMCID: PMC3389559;Abstract: Second-harmonic-generation (SHG) imaging of mouse ovaries ex vivo was used to detect collagen structure changes accompanying ovarian cancer development. Dosing with 4-vinylcyclohexene diepoxide and 7,12-dimethylbenz[a]anthracene resulted in histologically confirmed cases of normal, benign abnormality, dysplasia, and carcinoma. Parameters for each SHG image were calculated using the Fourier transform matrix and gray-level co-occurrence matrix (GLCM). Cancer versus normal and cancer versus all other diagnoses showed the greatest separation using the parameters derived from power in the highest-frequency region and GLCM energy. Mixed effects models showed that these parameters were significantly different between cancer and normal (P > 0.008). Images were classified with a support vector machine, using 25% of the data for training and 75% for testing. Utilizing all images with signal greater than the noise level, cancer versus not-cancer specimens were classified with 81.2% sensitivity and 80.0% specificity, and cancer versus normal specimens were classified with 77.8% sensitivity and 79.3% specificity. Utilizing only images with greater than of 75% of the field of view containing signal improved sensitivity and specificity for cancer versus normal to 81.5% and 81.1%. These results suggest that using SHG to visualize collagen structure in ovaries could help with early cancer detection. ©2012 Society of Photo-Optical Instrumentation Engineers (SPIE).
Proceedings Publications
- Majdi, M. S., Salman, K. N., Morris, M. F., Merchant, N. C., & Rodriguez, J. J. (2020). Deep Learning Classification of Chest X-Ray Images. In 2020 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI).
- Ram, S., Nguyen, V. T., Limesand, K. H., & Rodriguez, J. J. (2020). Combined Detection and Segmentation of Cell Nuclei in Microscopy Images Using Deep Learning. In 2020 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI).
- Majdi, M. S., Ram, S., Gill, J. T., & Rodríguez, J. J. (2018). Drive-Net: Convolutional Network for Driver Distraction Detection. In 2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI).
- Malladi, S., Ram, S., & Rodríguez, J. J. (2018). A Ground-Truth Fusion Method for Image Segmentation Evaluation. In 2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI).
- Ram, S., Majdi, M. S., Rodríguez, J. J., Gao, Y., & Brooks, H. L. (2018). Classification of Primary Cilia in Microscopy Images Using Convolutional Neural Random Forests. In 2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI).
- Gao, X., Ram, S., & Rodriguez, J. J. (2016, March 6-8). A Performance Comparison of Automatic Detection Schemes in Wide-Area Aerial Imagery. In IEEE Southwest Symp. on Image Analysis and Interpretation, 125-128.
- Ram, S., & Rodriguez, J. J. (2016, March 6-8). Image Super-Resolution Using Graph Regularized Block Sparse Representation. In IEEE Southwest Symp. on Image Analysis and Interpretation, 69-72.
- Ram, S., & Rodriguez, J. J. (2016, Sept. 25-28). Vehicle Detection in Aerial Images Using Multiscale Structure Enhancement and Symmetry. In IEEE Intl. Conf. on Image Processing, 3817-3821.
- Salahieh, B., Rodriguez, J. J., & Liang, R. (2015, June 7-11). Computational Depth-Variant Deconvolution Technique for Full-Focus Imaging. In Imaging and Applied Optics 2015: Computational Optical Sensing and Imaging, CT3F.5.1-3.
- Salahieh, B., Rodriguez, J. J., & Liang, R. (2015, June 7-11). Direct Superresolution Technique for Solving a Miniature Multi-Shift Imaging System. In Imaging and Applied Optics 2015: Computational Optical Sensing and Imaging, JW3A.5.1-3.
- Malladi, S. S., Ram, S., & Rodriguez, J. J. (2014, April 6-8). Superpixels Using Morphology for Rock Image Segmentation. In 2014 IEEE Southwest Symp. on Image Analysis and Interpretation, 145-148.
- Phillip, R. C., Ram, S., Gao, X., & Rodriguez, J. J. (2014, April 6-8). A Comparison of Tracking Algorithm Performance for Objects in Wide Area Imagery. In 2014 IEEE Southwest Symp. on Image Analysis and Interpretation, 109-112.
- Ram, S., & Rodriguez, J. J. (2014, April 6-8). Single Image Super-Resolution Using Dictionary-Based Local Regression. In 2014 IEEE Southwest Symp. on Image Analysis and Interpretation, 121-124.
- Ram, S., & Rodriguez, J. J. (2013, May 26-31). Random Walker Watersheds: A New Image Segmentation Approach. In 2013 IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, 1473-1477.
- Ram, S., & Rodriguez, J. J. (2013, May 26-31). Symmetry-Based Detection of Nuclei in Microscopy Images. In 2013 IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, 1128-1132.
- Rosado-Toro, J. A., Barr, T., Galons, J., Marron, M. T., Stopeck, A., Thomson, C., Altbach, M. I., & Rodriguez, J. J. (2013, May 26-31). Automated Segmentation of Breast Fat-Water MR Images Using Empirical Analysis. In 2013 IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, 1018-1022.
- Jayadevan, V. T., Rodriguez, J. J., Lonij, V. P., & Cronin, A. D. (2012, May 13-17). Forecasting Solar Power Intermittency Using Ground-Based Cloud Imaging. In World Renewable Energy Forum, 3, 2100-2106.
- Jha, A. K., & Rodriguez, J. J. (2012, April 22-24). A Maximum-Likelihood Approach for ADC Estimation of Lesions in Visceral Organs. In IEEE Southwest Symp. on Image Analysis and Interpretation, 21-24.
- Ram, S., Rodriguez, J. J., & Bosco, G. (2012, April 22-24). Size-Invariant Cell Nucleus Segmentation in 3-D Microscopy. In 2012 IEEE Southwest Symp. on Image Analysis and Interpretation, 37-40.
- Rodriguez, J. J., Lonij, V. P., Jayadevan, V. T., Brooks, A. E., & Koch, K. (2012, June 3-8). Forecasts of PV Power Output Using Power Measurements of 80 Residential PV Installs. In 38th IEEE Photovoltaic Specialists Conf., 3300-3305.
- Rosado-Toro, J. A., & Rodriguez, J. J. (2012, April 22-24). Cell Splitting Using Dynamic Programming. In 2012 IEEE Southwest Symp. on Image Analysis and Interpretation, 33-36.
Presentations
- Rodriguez, J. J. (2015, Sept. 18). Video Processing System for Zebrafish Behavioral Assay. Arizona Cancer Center Collaborative Cancer Grand Rounds. Tucson, AZ.
Poster Presentations
- Kulkarni, R., Rodriguez, J. J., & Tuller, M. (2016, Nov. 6-9). Improved Surface Area Estimation Based on Surface Curvedness. ASA-CSSA-SSSA Intl. Annual Meeting. Phoenix, AZ: Soil Science Society of America (SSSA).
- Kulkarni, R., Schaap, M. G., Rodriguez, J. J., & Tuller, M. (2016, Nov. 6-9). Synthesis of Sphere Packings for Evaluation of Image Segmentation Algorithms. ASA-CSSA-SSSA Intl. Annual Meeting. Phoenix, AZ: Soil Science Society of America (SSSA).
- Ram, S., Howerton, S. J., Danford, F. L., Utzinger, U., Rodriguez, J. J., & Vande Geest, J. (2016, May 1-5). Racioethnic Differences in Biomechanical Environment of the Lamina Cribrosa. ARVO 2016 Annual Meeting. Seattle, WA: Assn. for Research in Vision and Ophthalmology.
- Rosado-Toro, J. A., Avery, R., Altbach, M. I., Abidov, A., & Rodriguez, J. J. (2016, May 7-13). Semi-Automated Segmentation of the Right Ventricle in 4-CH MR Images. ISMRM 24th Annual Meeting & Exhibition. Singapore: Intl. Society for Magnetic Resonance in Medicine.
- Todd, D. W., Philip, R. C., Niihori, M., Rodriguez, J. J., & Jacob, A. (2016, May 20-21). High-Throughput Behavioral Zebrafish Assay for Drug Development Targeting Hearing Loss. AOS 149th Annual Meeting. Chicago, IL: American Otological Society.More infoBEST POSTER AWARD.
- Rosado-Toro, J. A., Barr, T., Galons, J., Marron, M. T., Stopeck, A. T., Thomson, C. A., Thompson, P., Carroll, D., Wolf, E., Altbach, M. I., & Rodriguez, J. J. (2015, May 30 – June 5). Automatic Segmentation of Breast Images Using Clustering and Dynamic Programming. ISMRM 23rd Annual Meeting & Exhibition. Toronto, Canada: Intl. Society for Magnetic Resonance in Medicine.