Paul A Kapp
- Professor, Geosciences
- Member of the Graduate Faculty
- (520) 621-6000
- Gould-Simpson, Rm. 310
- Tucson, AZ 85721
- pkapp@arizona.edu
Biography
1996 B.S. in Geology with an emphasis in Geophysics, University of Arizona
2001 Ph.D. in Geology, University of California, Los Angeles
2002-2008 Assistant Professor of Geosciences, University of Arizona
2008-2014 Associate Professor of Geosciences, University of Arizona
2014 - Professor of Geosciences, University of Arizona
Degrees
- Ph.D. Geology
- University of California, Los Angeles, Los Angeles, California, United States
- B.S. Geoscience
- University of Arizona, Tucson, Arizona, United States
Awards
- UA Geoscience Advisory Board's Outstanding Faculty Award
- Spring 2011
- UA Geosciences Advisory Board's Outstanding Faculty Award
- Spring 2011
- Fellow, Geological Society of America
- Spring 2009
- Geological Society of America Outstanding Young Scientist Award
- Geological Society of America, Fall 2008
- College of Science Early Career Teaching Award
- University of Arizona, Spring 2004
Interests
Teaching
Geology and tectonics
Research
My expertise lies in continental tectonics, regional geology, and structural-stratigraphic analysis. In the field I conduct geologic and geomorphic mapping, determine the kinematics of major structures, and measure stratigraphic sections. I study rocks ranging from Precambrian to Quaternary in age and from high-grade gneisses to loess. My analytical research is primarily focused on quantifying timing and rates with geochronology and thermochronology.INTERESTS: Regional Geology, Tectonics, Wind Processes
Courses
2024-25 Courses
-
Regional Structural Geol
GEOS 423 (Spring 2025) -
Regional Structural Geol
GEOS 523 (Spring 2025) -
Dissertation
GEOS 920 (Fall 2024) -
Regional Tectonics
GEOS 425 (Fall 2024) -
Regional Tectonics
GEOS 525 (Fall 2024)
2023-24 Courses
-
Directed Research
GEOS 392 (Spring 2024) -
Dissertation
GEOS 920 (Spring 2024) -
Honors Thesis
GEOS 498H (Spring 2024) -
Research
GEOS 900 (Spring 2024) -
Structural Geology
GEOS 304 (Spring 2024) -
Teaching Geosciences
GEOS 397A (Spring 2024) -
Dissertation
GEOS 920 (Fall 2023) -
Honors Thesis
GEOS 498H (Fall 2023) -
Research
GEOS 900 (Fall 2023) -
Structure-Tectonics
GEOS 596E (Fall 2023) -
Thesis
GEOS 910 (Fall 2023)
2022-23 Courses
-
Geology Field Camp
GEOS 414 (Summer I 2023) -
Directed Research
GEOS 392 (Spring 2023) -
Dissertation
GEOS 920 (Spring 2023) -
Honors Thesis
GEOS 498H (Spring 2023) -
Regional Structural Geol
GEOS 423 (Spring 2023) -
Regional Structural Geol
GEOS 523 (Spring 2023) -
Research
GEOS 900 (Spring 2023) -
Dissertation
GEOS 920 (Fall 2022) -
Honors Thesis
GEOS 498H (Fall 2022) -
Independent Study
GEOS 599 (Fall 2022) -
Research
GEOS 900 (Fall 2022)
2021-22 Courses
-
Directed Research
GEOS 392 (Summer I 2022) -
Directed Research
GEOS 492 (Spring 2022) -
Dissertation
GEOS 920 (Spring 2022) -
Research
GEOS 900 (Spring 2022) -
Structural Geology
GEOS 304 (Spring 2022) -
Teaching Geosciences
GEOS 397A (Spring 2022) -
Independent Study
GEOS 599 (Fall 2021) -
Regional Tectonics
GEOS 425 (Fall 2021) -
Regional Tectonics
GEOS 525 (Fall 2021) -
Research
GEOS 900 (Fall 2021)
2020-21 Courses
-
Geology Field Camp
GEOS 414 (Summer I 2021) -
Physical Geology
GEOS 251 (Spring 2021) -
Research
GEOS 900 (Spring 2021) -
Teaching Geosciences
GEOS 397A (Spring 2021) -
Geosciences
GEOS 596H (Fall 2020) -
Master's Report
GEOS 909 (Fall 2020) -
Structure-Tectonics
GEOS 596E (Fall 2020)
2019-20 Courses
-
Directed Research
GEOS 492 (Spring 2020) -
Dissertation
GEOS 920 (Spring 2020) -
Physical Geology
GEOS 251 (Spring 2020) -
Research
GEOS 900 (Spring 2020) -
Teaching Geosciences
GEOS 397A (Spring 2020) -
Directed Research
GEOS 492 (Fall 2019) -
Dissertation
GEOS 920 (Fall 2019) -
Independent Study
GEOS 399 (Fall 2019) -
Research
GEOS 900 (Fall 2019) -
Structural Geology
GEOS 304 (Fall 2019) -
Teaching Geosciences
GEOS 397A (Fall 2019)
2018-19 Courses
-
Directed Research
GEOS 492 (Spring 2019) -
Dissertation
GEOS 920 (Spring 2019) -
Honors Thesis
GEOS 498H (Spring 2019) -
Independent Study
GEOS 599 (Spring 2019) -
Regional Structural Geol
GEOS 423 (Spring 2019) -
Regional Structural Geol
GEOS 523 (Spring 2019) -
Directed Research
GEOS 492 (Fall 2018) -
Dissertation
GEOS 920 (Fall 2018) -
Honors Thesis
GEOS 498H (Fall 2018) -
Structural Geology
GEOS 304 (Fall 2018) -
Teaching Geosciences
GEOS 397A (Fall 2018)
2017-18 Courses
-
Dissertation
GEOS 920 (Spring 2018) -
Master's Report
GEOS 909 (Spring 2018) -
Regional Tectonics
GEOS 425 (Spring 2018) -
Regional Tectonics
GEOS 525 (Spring 2018) -
Research
GEOS 900 (Spring 2018) -
Dissertation
GEOS 920 (Fall 2017) -
Research
GEOS 900 (Fall 2017) -
Structural Geology
GEOS 304 (Fall 2017) -
Structure-Tectonics
GEOS 596E (Fall 2017) -
Teaching Geosciences
GEOS 397A (Fall 2017)
2016-17 Courses
-
Dissertation
GEOS 920 (Spring 2017) -
Regional Structural Geol
GEOS 423 (Spring 2017) -
Regional Structural Geol
GEOS 523 (Spring 2017) -
Research
GEOS 900 (Spring 2017) -
Directed Research
GEOS 392 (Fall 2016) -
Dissertation
GEOS 920 (Fall 2016) -
Independent Study
GEOS 599 (Fall 2016) -
Research
GEOS 900 (Fall 2016) -
Structural Geology
GEOS 304 (Fall 2016) -
Teaching Geosciences
GEOS 397A (Fall 2016)
2015-16 Courses
-
Dissertation
GEOS 920 (Spring 2016)
Scholarly Contributions
Books
- DeCelles, P. G., Ducea, M. N., Carrapa, B., & Kapp, P. A. (2015). Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile. Geological Society of America.
Chapters
- Metcalf, K., & Kapp, P. A. (2019). History of subduction erosion and accretion recorded in the Yarlung Suture Zone, southern Tibet. In Himalayan Tectonics: A Modern Synthesis(pp 517-554). Geological Society of London Special Publication 483. doi:10.1144/SP483.12
- Decelles, P. G., Leary, R. J., & Kapp, P. A. (2018). Cenozoic basin evolution in the Indus-Yarlung suture zone and High Himalaya. In Tectonics, Sedimentary Basins, and Provenance: A Celebration of William R. Dickinson’s Career(pp 1-34). Boulder: Geological Society of America Special Paper 540. doi:30.1130/2018.2540(30)
- He, J., Kapp, P. A., Chapman, J., Decelles, P. G., & Carrapa, B. (2018). Structural setting and detrital zircon U-Pb geochronology of Triassic-Cenozoic strata in the eastern Central Pamir, Tajikistan. In Himalayan Tectonics: A Modern Synthesis. London: Geological Society of London Special Publication 483. doi:10.1144/SP483.11
Journals/Publications
- Clinkscales, C., Kapp, P. A., Thompson, S., Wang, H., Laskowski, A., Orme, D. A., & Pullen, A. (2021). Regional exhumation and tectonic history of the Shanxi Rift and Taihangshan, North China. Tectonics, 40. doi:10.1029/2020TC006416
- Jepson, G., Carrapa, B., Gillespie, J., Feng, R., DeCelles, P. G., Kapp, P. A., Tabor, C. R., & Zhu, J. (2021). Climate as the great equalizer of continental-scale erosion. Geophysical Research Letters, 48, doi:10.1029/2021GL095008.
- Sundell, K. E., Laskowski, A. K., Kapp, P. A., Ducea, M. N., & Chapman, J. B. (2021). Jurassic to Neogene quantitative crustal thickness estimates in southern Tibet. GSA Today, 31, 4-10. doi:10.1130/GSATG461A.1
- Abell, J. T., Pullen, A., Lebo, Z. J., Kapp, P., Gloege, L., Metcalf, A. R., Nie, J., & Winckler, G. (2020). A wind-albedo-wind feedback driven by landscape evolution. Nature Communications, 11, doi:10.1038/s41467-019-13661-w.
- Abell, J. T., Rahimi, S. R., Pullen, A., Lebo, Z. J., Zhang, D., Kapp, P., Gloege, L., Ridge, S., Nie, J., & Winckler, G. (2020). A quantitative model-based assessment of stony desert landscape evolution in the Hami Basin, China: Implications for Plio-Pleistocene dust production in eastern Asia. Geophysical Research Letters, 47, doi:10.1029/2020GL090064.
- Chen, Y., Wang, G., Kapp, P., Shen, T., Zhang, P., Zhu, C., & Cao, K. (2020). Episodic exhumation and related tectonic controlling during Mesozoic in the Eastern Tian Shan, Xinjiang, northwestern China. Tectonophysics, 796, doi:10.1016/j.tecto.2020.228647.
- Clinkscales, C., Kapp, P., & Wang, H. (2020). Exhumation history of the north-central Shanxi Rift, North China, revealed by low-temperature thermochronology. Earth and Planetary Science Letters, 536, doi:10.1016/j.epsl.2020.116146.
- Ma, A., Hu, X., Kapp, P., BouDagher-Fadel, M. .., & Lai, W. (2020). Pre-Oxfordian (?163 Ma) ophiolite obduction in Central Tibet. Geophysical Research Letters, 47, doi:10.1029/2019GL086650.
- Ma, A., Hu, X., Kapp, P., Lai, W., Han, Z., & Xue, W. (2020). Mesozoic subduction accretion history in central Tibet constrained from provenance analysis of the Mugagangri Subduction Complex in the Gangon-Nujiang suture zone. Tectonics, 39, doi:10.1029/2020TC006144.
- Pullen, A., Banaszynski, M., Kapp, P., Thomson, S. N., & Cai, F. (2020). A mid-Cretaceous change from fast to slow exhumation of the western Chinese Altai mountains: A climate driven exhumation signal?. Journal of Asian Earth Sciences, 197, doi:10.1016/j.jseaes.2020.104387.
- Quade, J., Leary, R., Dettinger, M. P., Orme, D., Krupa, A., DeCelles, P. G., Kano, A., Kato, H., Waldrip, R., Huang, W., & Kapp, P. (2020). Resetting Southern Tibet: The serious challenge of obtaining primary records of Paleoaltimetry. Global and Planetary Change, 191, doi:10.1016/j.gloplacha.2020.103194.
- Worthington, J. R., Ratschbacher, L., Stübner, K., Khan, J., Malz, N., Schneider, S., Kapp, P., Chapman, J. B., Goddard, A. S., Brooks, H. L., Lamadrid, H. M., Steele-MacInnis, M. .., Rutte, D., Jonckheere, R., Pfänder, J., Hacker, B. R., Oimahmadov, I., & Gadoev, M. (2020). The Alichur dome, South Pamir, western India-Asia collisional zone: detailing the Neogene Shakhdara-Alichur syn-collisional gneiss-dome complex and connection to lithospheric processes. Tectonics, 39, e2019TC005735, doi:10.1029/2019TC005735.
- Clinkscales, C., & Kapp, P. A. (2019). Structural style and kinematics of the Taihang-Luliangshan fold belt, North China: Implications for the Yanshanian orogeny. Lithosphere, 11, 767-783. doi:10.1130/L1096.1
- Kapp, P., & DeCelles, P. G. (2019). MESOZOIC-CENOZOIC GEOLOGICAL EVOLUTION OF THE HIMALAYAN-TIBETAN OROGEN AND WORKING TECTONIC HYPOTHESES. AMERICAN JOURNAL OF SCIENCE, 319(3), 159-254.
- Chapman, J. B., Robinson, A. C., Carrapa, B., Villarreal, D., Worthington, J., DeCelles, P. G., Kapp, P., Gadoev, M., Oimahmadov, I., & Gehrels, G. (2018). Cretaceous shortening and exhumation history of the South Pamir terrane. LITHOSPHERE, 10(4), 494-511.
- Chapman, J. B., Scoggin, S. H., Kapp, P., Carrapa, B., Ducea, M. N., Worthington, J., Oimahmadov, I., & Gadoev, M. (2018). Mesozoic to Cenozoic magmatic history of the Pamir. EARTH AND PLANETARY SCIENCE LETTERS, 482, 181-192.
- Laskowski, A. K., Kapp, P., & Cai, F. (2018). Gangdese culmination model: Oligocene-Miocene duplexing along the India-Asia suture zone, Lazi region, southern Tibet. GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 130(7-8), 1355-1376.
- Ma, A., Hu, X., Kapp, P., Han, Z., Lai, W., & BouDagher-Fadel, M. (2018). The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block (Shamuluo Formation, Najiangco area): Implications for the tectonic uplift of central Tibet. PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 506, 30-47.
- Pelletier, J. D., Kapp, P. A., Abell, J., Field, J. P., Williams, Z. C., & Dorsey, R. J. (2018). Controls on Yardang Development and Morphology: 1. Field Observations and Measurements at Ocotillo Wells, California. JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 123(4), 694-722.
- Pullen, A., Kapp, P., & Chen, N. (2018). Development of stratigraphically controlled, eolian-modified unconsolidated gravel surfaces and yardang fields in the wind-eroded Hami Basin, northwestern China. GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 130(3-4), 630-648.
- Wang, B. o., Zhai, Y., Kapp, P., Jong, K. D., Zhong, L., Liu, H., Ma, Y., Gong, H., & Geng, H. (2018). Accretionary tectonics of back-arc oceanic basins in the South Tianshan: Insights from structural, geochronological, and geochemical studies of the Wuwamen ophiolite melange. GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 130(1-2), 284-306.
- Wang, H., Ding, L., Kapp, P., Cai, F., Clinkscales, C., Xu, Q., Yue, Y., Li, S., & Fan, S. (2018). Earliest Cretaceous accretion of Neo-Tethys oceanic subduction along the Yarlung Zangbo Suture Zone, Sangsang area, southern Tibet. TECTONOPHYSICS, 744, 373-389.
- Carrapa, B., bin, H., Kapp, P. A., DeCelles, P. G., & Gehrels, G. (2017). Tectonic and erosional history of southern Tibet recorded by detrital chronological signatures along the Yarlung River drainage. GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 129(5-6), 570-581.
- Chapman, J. B., & Kapp, P. (2017). Tibetan Magmatism Database. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 18(11), 4229-4234.
- Chapman, J. B., Ducea, M. N., Kapp, P., Gehrels, G. E., & DeCelles, P. G. (2017). Spatial and temporal radiogenic isotopic trends of magmatism in Cordilleran orogens. GONDWANA RESEARCH, 48, 189-204.
- Hu, C., Chen, N., Kapp, P., Chen, J., Xiao, A., & Zhao, Y. (2017). Yardang geometries in the Qaidam Basin and their controlling factors. GEOMORPHOLOGY, 299, 142-151.
- Huang, W., Lippert, P. C., Jackson, M. J., Dekkers, M. J., Zhang, Y., Li, J., Guo, Z., Kapp, P. A., & van Hinsbergen, D. J. (2017). Remagnetization of the Paleogene carbonates in the Gamba area of southern Tibet: implications for reconstructing the lower plate in the India-Asia collision. Journal of Geophysical Research: Solid Earth, 122. doi:doi:10.1002/2016/JB013662
- Huang, W., Lippert, P. C., Jackson, M. J., Dekkers, M. J., Zhang, Y., Li, J., Guo, Z., Kapp, P., & van, H. (2017). Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: Implications for reconstructing the lower plate in the India-Asia collision. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 122(2), 808-825.
- Huang, W., Lippert, P. C., Jackson, M. J., Dekkers, M. J., Zhang, Y., Li, J., Guo, Z., Kapp, P., & van, H. (2017). Reply to comment by Z. Yi et al. on "Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: Implications for reconstructing the lower plate in the India-Asia collision". JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 122(7), 4859-4863.
- Laskowski, A. K., Kapp, P., Ding, L., Campbell, C., & Liu, X. (2017). Tectonic evolution of the Yarlung suture zone, Lopu Range region, southern Tibet. TECTONICS, 36(1), 108-136.
- Metcalf, K., & Kapp, P. (2017). The Yarlung suture melange, Lopu Range, southern Tibet: Provenance of sandstone blocks and transition from oceanic subduction to continental collision. GONDWANA RESEARCH, 48, 15-33.
- Worthington, J. R., Kapp, P., Minaev, V., Chapman, J. B., Mazdab, F. K., Ducea, M. N., Oimahmadov, I., & Gadoev, M. (2017). Birth, life, and demise of the Andean-syn-collisional Gissar arc: Late Paleozoic tectono-magmatic-metamorphic evolution of the southwestern Tian Shan, Tajikistan. TECTONICS, 36(10), 1861-1912.
- Cai, F., Ding, L., Laskowski, A. K., Kapp, P., Wang, H., Xu, Q., & Zhang, L. (2016). Late Triassic paleogeographic reconstruction along the Neo-Tethyan Ocean margins, southern Tibet. EARTH AND PLANETARY SCIENCE LETTERS, 435, 105-114.
- Laskowski, A. K., Kapp, P., Vervoort, J. D., & Ding, L. (2016). High-pressure Tethyan Himalaya rocks along the India-Asia suture zone in southern Tibet. LITHOSPHERE, 8(5), 574-582.
- Leary, R., Orme, D. A., Laskowski, A. K., DeCelles, P. G., Kapp, P., Carrapa, B., & Dettinger, M. (2016). Along-strike diachroneity in deposition of the Kailas Formation in central southern Tibet: Implications for Indian slab dynamics. GEOSPHERE, 12(4), 1198-1223.
- Licht, A., Dupont-Nivet, G., Pullen, A., Kapp, P., Abels, H. A., Lai, Z., Guo, Z., Abell, J., & Giesler, D. (2016). Resilience of the Asian atmospheric circulation shown by Paleogene dust provenance. Nature Communications, 7.
- Licht, A., Pullen, A., Kapp, P., Abell, J., & Giesler, N. (2016). Eolian cannibalism: Reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau. GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 128(5-6), 944-956.
- Pepper, M., Gehrels, G., Pullen, A., Ibanez-Mejia, M., Ward, K. M., & Kapp, P. (2016). Magmatic history and crustal genesis of western South America: Constraints from U-Pb ages and Hf isotopes of detrital zircons in modern rivers. GEOSPHERE, 12(5), 1532-1555.
- Wang, C., Ding, L., Zhang, L., Kapp, P., Pullen, A., & Yue, Y. (2016). Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere. LITHOS, 262, 320-333.
- Chen, N., Ni, N., Kapp, P., Chen, J., Xiao, A., & Li, H. (2015). Structural Analysis of the Hero Range in the Qaidam Basin, Northwestern China, Using Integrated UAV, Terrestrial LiDAR, Landsat 8, and 3-D Seismic Data. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 8(9), 4581-4591.
- DeCelles, P. G., Ducea, M. N., Carrapa, B., & Kapp, P. A. (2015). Preface and Acknowledgments. Geological Society of America Memoirs, 212, v--v.
- DeCelles, P., Zandt, G., Beck, S., Currie, C., Ducea, M., Kapp, P., Gehrels, G., Carrapa, B., Quade, J., & Schoenbohm, L. (2015). Cyclical orogenic processes in the Cenozoic central Andes. Geological Society of America Memoirs, 212, MWR212--22.
- Huang, W., Dupont-Nivet, G., Lippert, P. C., van, H., Dekkers, M. J., Guo, Z., Waldrip, R., Li, X., Zhang, X., Liu, D., & Kapp, P. (2015). Can a primary remanence be retrieved from partially remagnetized Eocence volcanic rocks in the Nanmulin Basin (southern Tibet) to date the India-Asia collision?. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 120(1), 42-66.
- Huang, W., Dupont-Nivet, G., Lippert, P. C., van, H., Dekkers, M. J., Waldrip, R., Ganerod, M., Li, X., Guo, Z., & Kapp, P. (2015). What was the Paleogene latitude of the Lhasa terrane? A reassessment of the geochronology and paleomagnetism of Linzizong volcanic rocks (Linzhou basin, Tibet). TECTONICS, 34(3), 594-622.
- Huang, W., van, H., Dekkers, M. J., Garzanti, E., Dupont-Nivet, G., Lippert, P. C., Li, X., Maffione, M., Langereis, C. G., Hu, X., Guo, Z., & Kapp, P. (2015). Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 16(1), 77-100.
- Huang, W., van, H., Maffione, M., Orme, D. A., Dupont-Nivet, G., Guilmette, C., Ding, L., Guo, Z., & Kapp, P. (2015). Lower Cretaceous Xigaze ophiolites formed in the Gangdese forearc: Evidence from paleomagnetism, sediment provenance, and stratigraphy. EARTH AND PLANETARY SCIENCE LETTERS, 415, 142-153.
- Kapp, P., Pullen, A., Pelletier, J. D., Russell, J., Goodman, P., & Cai, F. (2015). From dust to dust: Quaternary wind erosion of the Mu Us Desert and Loess Plateau, China. GEOLOGY, 43(9), 835-838.
- Maffione, M., van Hinsbergen, D. J., Koornneef, L. M., Guilmette, C., Hodges, K., Borneman, N., Huang, W., Ding, L., & Kapp, P. (2015). Forearc hyperextension dismembered the south Tibetan ophiolites. GEOLOGY, 43(6), 475-478.
- Metcalf, K., & Kapp, P. (2015). Along-strike variations in crustal seismicity and modern lithospheric structure of the central Andean forearc. Geological Society of America Memoirs, 212, 61--78.
- Orme, D. A., Carrapa, B., & Kapp, P. (2015). Sedimentology, provenance and geochronology of the upper Cretaceous-lower Eocene western Xigaze forearc basin, southern Tibet. BASIN RESEARCH, 27(4), 387-411.
- Zhang, L., Ding, L., Pullen, A., & Kapp, P. (2015). Reply to comment by W. Liu and B. Xia on “Age and geochemistry of western Hoh-Xil-Songpan-Ganzi granitoids, northern Tibet: Implications for the Mesozoic closure of the Paleo-Tethys ocean”. Lithos, 212(215), 457--461.
- Carrapa, B., Orme, D. A., DeCelles, P. G., Kapp, P., Cosca, M. A., & Waldrip, R. (2014). Miocene burial and exhumation of the India-Asia collision zone in southern Tibet: Response to slab dynamics and erosion. GEOLOGY, 42(5), 443-446.
- DeCelles, P. G., Kapp, P., Gehrels, G. E., & Ding, L. (2014). Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision. TECTONICS, 33(5), 824-849.
- KAPP, P., PULLEN, A., PELLETIER, J. D., RUSSELL, J., & CAI, F. (2014). FROM DUST TO DUST: QUATERNARY WIND EROSION OF THE MU US DESERT AND LOESS PLATEAU, CHINA. 2014 GSA Annual Meeting in Vancouver, British Columbia.
- Pullen, A., & Kapp, P. (2014). Mesozoic tectonic history and lithospheric structure of the Qiangtang terrane: Insights from the Qiangtang metamorphic belt, central Tibet. Geological Society of America Special Papers, 507, SPE507--04.
- Volkmer, J. E., Kapp, P., Horton, B. K., Gehrels, G. E., Minervini, J. M., & Ding, L. (2014). Northern Lhasa thrust belt of central Tibet: Evidence of Cretaceous--early Cenozoic shortening within a passive roof thrust system?. Geological Society of America Special Papers, 507, 59--70.
- Zhang, L., Ding, L., Pullen, A., Xu, Q., Liu, D., Cai, F., Yue, Y., Lai, Q., Shi, R., Ducea, M. N., Kapp, P., & Chapman, A. (2014). Age and geochemistry of western Hoh-Xil-Songpan-Ganzi granitoids, northern Tibet: Implications for the Mesozoic closure of the Paleo-Tethys ocean. LITHOS, 190, 328-348.
- Zhang, L., Ducea, M. N., Ding, L., Pullen, A., Kapp, P., & Hoffman, D. (2014). Southern Tibetan Oligocene-Miocene adakites: A record of Indian slab tearing. LITHOS, 210, 209-223.
- Ding, L., Yang, D., Cai, F. L., Pullen, A., Kapp, P., Gehrels, G. E., Zhang, L. Y., Zhang, Q. H., Lai, Q. Z., Yue, Y. H., & Shi, R. D. (2013). Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo-Tethys Ocean. TECTONICS, 32(1), 34-48.
- Guynn, J., Tropper, P., Kapp, P., & Gehrels, G. E. (2013). Metamorphism of the Amdo metamorphic complex, Tibet: implications for the Jurassic tectonic evolution of the Bangong suture zone. JOURNAL OF METAMORPHIC GEOLOGY, 31(7), 705-727.
- Heermance, R. V., Pullen, A., Kapp, P., Garzione, C. N., Bogue, S., Ding, L., & Song, P. (2013). Climatic and tectonic controls on sedimentation and erosion during the Pliocene-Quaternary in the Qaidam Basin (China). GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 125(5-6), 833-856.
- Pearson, D. M., Kapp, P., DeCelles, P. G., Reiners, P. W., Gehrels, G. E., Ducea, M. N., & Pullen, A. (2013). Influence of pre-Andean crustal structure on Cenozoic thrust belt kinematics and shortening magnitude: Northwestern Argentina. GEOSPHERE, 9(6), 1766-1782.
- Rohrmann, A., Heermance, R., Kapp, P., & Cai, F. (2013). Wind as the primary driver of erosion in the Qaidam Basin, China. EARTH AND PLANETARY SCIENCE LETTERS, 374, 1-10.
- Sundell, K. E., Taylor, M. H., Styron, R. H., Stockli, D. F., Kapp, P., Hager, C., Liu, D., & Ding, L. (2013). Evidence for constriction and Pliocene acceleration of east-west extension in the North Lunggar rift region of west central Tibet. TECTONICS, 32(5), 1454-1479.
- Woodruff Jr., W. H., Horton, B. K., Kapp, P., & Stockli, D. F. (2013). Late Cenozoic evolution of the Lunggar extensional basin, Tibet: Implications for basin growth and exhumation in hinterland plateaus. Bulletin of the Geological Society of America, 125(3-4), 343-358.More infoAbstract: North-trending rifts and associated strikeslip faults in the Tibetan Plateau suggest Ceno zoic east-west extension, but the dominant modes of distributed extensional deforma tion and basin formation are unclear. The Lunggar basin in west-central Tibet is bounded by a
- Guynn, J., Kapp, P., Gehrels, G. E., & Ding, L. (2012). U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications. JOURNAL OF ASIAN EARTH SCIENCES, 43(1), 23-50.
- Pearson, D. M., Kapp, P., Reiners, P. W., Gehrels, G. E., Ducea, M. N., Pullen, A., Otamendi, J. E., & Alonso, R. N. (2012). Major Miocene exhumation by fault-propagation folding within a metamorphosed, early Paleozoic thrust belt: Northwestern Argentina. TECTONICS, 31.
- Rohrmann, A., Kapp, P., Carrapa, B., Reiners, P. W., Guynn, J., Ding, L., & Heizler, M. (2012). Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. GEOLOGY, 40(2), 187-190.
- Taylor, M. H., Kapp, P. A., & Horton, B. K. (2012). Basin Response to Active Extension and Strike-Slip Deformation in the Hinterland of the Tibetan Plateau. Tectonics of Sedimentary Basins: Recent Advances, 445-460.More infoAbstract: Modern sedimentary basins in the internally drained hinterland of the Himalayan- Tibetan orogenic system include north-trending rift basins and strike-slip basins along the central Tibet conjugate strike-slip zone. This chapter focuses on the geometry, relationship to fault kinematics, and potential evolution of these two types of basins by using specific examples. Of particular note is that active basin development occurs along kinematically coordinated fault systems within the hinterland of a collisional system undergoing coeval north-south shortening (partially accommodated by conjugate strikeslip faulting) and east-west extension. The implications for understanding the tectonic processes behind active basin development in Tibet may impact our understanding of the preservation potential and interpretation of rift and strike-slip basins that developed in regions of hot, thickened crust. © 2012 Blackwell Publishing Ltd.
- DeCelles, P. G., Kapp, P., Quade, J., & Gehrels, G. E. (2011). Oligocene-Miocene Kailas basin, southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone. GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 123(7-8), 1337-1362.
- Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin, A., McQuarrie, N., & Yin, A. (2011). Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. TECTONICS, 30.
- Kapp, P., Pelletier, J. D., Rohrmann, A., Heermance, R., Russell, J., & Ding, L. (2011). Wind erosion in the Qaidam basin, central Asia: Implications for tectonics, paleoclimate, and the source of the Loess Plateau. GSA Today, 21(4-5), 4-10.More infoAbstract: Liquid water and ice are the dominant agents of erosion and sediment transport in most actively growing mountain belts. An exception is in the western Qaidam basin along the northeastern margin of the Tibetan Plateau, where wind and wind- blown sand have sculpted enormous yardang fields in actively folding sedimentary strata. Here, we present observations suggesting that since the late Pliocene, wind episodically (during glacial and stadial periods) removed strata from the western Qaidam basin at high rates (>0.12-1.1 mm/yr) and may have accelerated rates of tectonic folding. Severe wind erosion likely occurred during glacial and stadial periods when central Asia was drier and the main axis of the polar jet stream was located ~10̊ closer to the equator (over the Qaidam basin), as predicted by global climate models. Reconstructed wind patterns, the estimated volume of Qaidam basin material removed by wind, and numerical models of dust transport all support the hypothesis that the Qaidam basin was a major source of dust to the Loess Plateau.
- Pullen, A., Kapp, P., DeCelles, P. G., Gehrels, G. E., & Ding, L. (2011). Cenozoic anatexis and exhumation of Tethyan Sequence rocks in the Xiao Curia Range, Southwest Tibet. TECTONOPHYSICS, 501(1-4), 28-40.
- Pullen, A., Kapp, P., Gehrels, G. E., Ding, L., & Zhang, Q. (2011). Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure. GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 123(3-4), 585-600.
- Pullen, A., Kapp, P., McCallister, A. T., Chang, H., Gehrels, G. E., Garzione, C. N., Heermance, R. V., & Ding, L. (2011). Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications. GEOLOGY, 39(11), 1031-1034.
- van Hinsbergen, D. J., Kapp, P., Dupont-Nivet, G., Lippert, P. C., DeCelles, P. G., & Torsvik, T. H. (2011). Restoration of Cenozoic deformation in Asia and the size of Greater India. TECTONICS, 30.
- Arca, M. S., Kapp, P., & Johnson, R. A. (2010). Cenozoic crustal extension in southeastern Arizona and implications for models of core-complex development. TECTONOPHYSICS, 488(1-4), 174-190.
- Dupont-Nivet, G., Lippert, P. C., van, H., Meijers, M., & Kapp, P. (2010). Palaeolatitude and age of the Indo-Asia collision: palaeomagnetic constraints. GEOPHYSICAL JOURNAL INTERNATIONAL, 182(3), 1189-1198.
- Saylor, J., DeCelles, P., Gehrels, G., Murphy, M., Zhang, R., & Kapp, P. (2010). Basin formation in the High Himalaya by arc-parallel extension and tectonic damming: Zhada basin, southwestern Tibet. TECTONICS, 29.
- Kapp, P., Manning, C. E., & Tropper, P. (2009). Phase-equilibrium constraints on titanite and rutile activities in mafic epidote amphibolites and geobarometry using titanite-rutile equilibria. JOURNAL OF METAMORPHIC GEOLOGY, 27(7), 509-521.
- Leier, A., Quade, J., DeCelles, P., & Kapp, P. (2009). Stable isotopic results from paleosol carbonate in South Asia: Paleoenvironmental reconstructions and selective alteration. EARTH AND PLANETARY SCIENCE LETTERS, 279(3-4), 242-254.
- Saylor, J. E., Quade, J., Dellman, D. L., DeCelles, P. G., Kapp, P. A., & Ding, L. (2009). THE LATE MIOCENE THROUGH PRESENT PALEOELEVATION HISTORY OF SOUTHWESTERN TIBET. AMERICAN JOURNAL OF SCIENCE, 309(1), 1-42.
- Kapp, P., Taylor, M., Stockli, D., & Ding, L. (2008). Development of active low-angle normal fault systems during orogenic collapse: Insight from Tibet. GEOLOGY, 36(1), 7-10.
- Pullen, A., Kapp, P., Gehrels, G. E., DeCelles, P. G., Brown, E. H., Fabijanic, J. M., & Ding, L. (2008). Gangdese retroarc thrust belt and foreland basin deposits in the Damxung area, southern Tibet. JOURNAL OF ASIAN EARTH SCIENCES, 33(5-6), 323-336.
- Pullen, A., Kapp, P., Gehrels, G. E., Vervoort, J. D., & Ding, L. (2008). Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. GEOLOGY, 36(5), 351-354.
- DeCelles, P. G., Quade, J., Kapp, P., Fan, M., Dettman, D. L., & Ding, L. (2007). High and dry in central Tibet during the Late Oligocene. EARTH AND PLANETARY SCIENCE LETTERS, 253(3-4), 389-401.
- Ding, L., Kapp, P., Yue, Y., & Lai, Q. (2007). Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet. EARTH AND PLANETARY SCIENCE LETTERS, 254(1-2), 28-38.
- Guynn, J., Kapp, P., Pullen, A., Heizier, M., Gehrels, G., & Ding, L. (2007). Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet. GEOLOGY, 34(6), 505-508.
- He, S., Kapp, P., DeCelles, P. G., Gehrels, G. E., & Heizler, M. (2007). Cretaceous-Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet. TECTONOPHYSICS, 433(1-4), 15-37.
- Kapp, P., DeCelles, P. G., Gehrels, G. E., Heizier, M., & Ding, L. (2007). Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 119(7-8), 917-932.
- Leier, A. L., DeCelles, P. G., Kapp, P., & Ding, L. (2007). The takena formation of the Lhasa terrane, southern Tibet: The record of a Late Cretaceous retroarc foreland basin. GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 119(1-2), 31-48.
- Leier, A. L., Decelles, P. G., Kapp, P., & Gehrels, G. E. (2007). Lower cretaceous strata in the Lhasa Terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan plateau. JOURNAL OF SEDIMENTARY RESEARCH, 77(9-10), 809-825.
- Leier, A. L., Kapp, P., Gehrels, G. E., & DeCelles, P. G. (2007). Detrital zircon geochronology of carboniferous-cretaceous strata in the lhasa terrane, Southern Tibet. BASIN RESEARCH, 19(3), 361-378.
- Volkmer, J. E., Kapp, P., Guynn, J. H., & Lai, Q. (2007). Cretaceous-Tertiary structural evolution of the north central Lhasa terrane, Tibet. TECTONICS, 26(6).
- Volkmer, J. E., Kapp, P., Guynn, J. H., & Lai, Q. (2007). Cretaceous-Tertiary structural evolution of the north central Lhasa terrane, Tibet. Tectonics, 26(6).More infoAbstract: In the north central Lhasa terrane of Tibet, two distnct structural levels of an east-west striking thrust system are exposed along the north trending late Cenozoic Xiagangjiang rift. Upper Paleozoic strata deformed by the south directed Langgadong La thrust, and Cretaceous strata involved in variably north and south directed thrusting characterize these lower and upper structural levels, respectively. These two structural levels are separated by the Tagua Ri passive roof thrust. Balanced cross section restoration suggests that the thrust system accommodated ∼103 km(∼53%) shortening. The 40Ar/ 39Ar results, together with an interpretation of synthrust deposition of Upper Cretaceous strata, suggest that the majority of shortening occurred during the Late Cretaceous-Paleocene. Cretaceous strata lie unconformable on Permian rocks; volcanic tuffs directly above the unconformity yield U-Pb zircon ages of ∼131 Ma. Upper Cretaceous strata record a change from shallow marine to nonmarine deposition, indicating uplift above sea level during this time. The overall south directed vergence of the thrust belt is consistent with substantial crustal thickening in central Tibet by large-scale northward underthrusting of Lhasa terrane basement beneath the Qiantang terrane prior to the Indo-Asian collision. The documented decoupling of contractional deformation at shallow crustal levels appears to be a regional characteristic of Tibet from at least the Bangong suture in the north to the Tethyan Himalaya to the south. This style of deformation explains the absence of basement exposures and major denudation in this region despite substantial crustal shortening. Copyright 2007 by the American Geophysical Union.
- DeCelles, P. G., Kapp, P., Ding, L., & Gehrels, G. E. (2006). Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 119(5-6), 654-680.
- Ding, L., Kapp, P., & Wan, X. Q. (2005). Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. TECTONICS, 24(3).
- Kapp, J., Harrison, T. M., Kapp, P., Grove, M., Lovera, O. M., & Lin, D. (2005). Nyainqentanglha Shan: A window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 110(B8).
- Kapp, P., Yin, A., Harrison, T. M., & Ding, L. (2005). Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 117(7-8), 865-878.
- Kapp, P., Yin, A., Harrison, T. M., & Ding, L. (2005). Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 117(7-8), 865-878.More infoAbstract: The geologic map pattern of the Qiangtang terrane in central Tibet defines a >600-km-long and up to 270-km-wide east-plunging structural culmination. It is characterized by early Mesozoic blueschist-bearing mélange and upper Paleozoic strata in the core and mainly Triassic-Jurassic strata along the limbs. In the western Qiangtang terrane (∼84°E), the culmination is unconformably overlain by weakly deformed mid-Cretaceous volcanic flows and tuffs. Along the Bangong suture to the south (32°N, 84°E), mid-Cretaceous nonmarine red beds and volcanic rocks lie unconformably on Jurassic suture zone rocks. These relationships demonstrate that west-central Tibet was above sea level during the mid-Cretaceous and experienced significant denudation prior to mid-Cretaceous time. Growth of the Qiangtang culmination is inferred to have initiated during southward emplacement of a thrust sheet of early Mesozoic mélange and upper Paleozoic strata during the Early Cretaceous Lhasa-Qiangtang collision. The north-south width of the inferred thrust sheet provides a minimum slip estimate of ∼150 km at 84°E, decreasing eastward to ∼70 km at 87°E. Paleogene deformation in the Qiangtang terrane is characterized by widely distributed, mainly north-dipping thrust faults that cut Eocene-Oligocene red beds and volcanic rocks in their footwall. Along the Bangong suture, the north-dipping Shiquanhe-Gaize-Amdo thrust system cuts 64 and 43 m.y. old volcanic tuffs in its footwall and accommodated >40 km of post-mid-Cretaceous shortening. The Tertiary south-dipping Gaize-Siting Co backthrust bounds the southern margin of the Bangong suture and marks the northernmost limit of mid-Cretaceous marine strata in central Tibet. Cretaceous deformation and denudation in central Tibet is attributed to northward underthrusting of the Lhasa terrane beneath the Qiangtang terrane along the Bangong suture. This model implies that (1) Cretaceous strata along the Bangong suture and in the northern Lhasa terrane were deposited in a flexural foreland basin system and derived at least in part from the Qiangtang terrane, and (2) the central Tibetan crust was thickened substantially prior to the Indo-Asian collision. Although its magnitude is poorly known, Tertiary shortening in the Qiangtang terrane is more prevalent than in the Lhasa terrane; this difference may be attributed to the presence of underthrust mélange in the deeper central Tibetan crust, which would have made it weaker than the Lhasa terrane during the Indo-Asian collision. © 2005 Geological Society of America.
- Kapp, P., & Guynn, J. H. (2004). Indian punch rifts Tibet. GEOLOGY, 32(11), 993-996.
- Ding, L., Kapp, P., Zhong, D. L., & Deng, W. M. (2003). Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. JOURNAL OF PETROLOGY, 44(10), 1833-1865.
- Kapp, P., Murphy, M. A., Yin, A., Harrison, T. M., Ding, L., & Guo, J. H. (2003). Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. TECTONICS, 22(4).
- Kapp, P., Yin, A., Manning, C. E., Harrison, T. M., Taylor, M. H., & Ding, L. (2003). Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. TECTONICS, 22(4).
- Taylor, M., Yin, A., Ryerson, F. J., Kapp, P., & Ding, L. (2003). Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau. TECTONICS, 22(4).
- Deng, X., Ding, L., Liu, X., Yin, A., Kapp, P. A., Murphy, M. A., & Manning, C. E. (2002). Geochemical characteristics of blueschist and its tectonic significance in the central Qiangtang area, Tibet. Acta Petrologica Sinica, 18(4), 517-525.More infoAbstract: Blueschists are considered the mark of plate tectonic boundary in the Gangmar-Taoxing Co area, central Qiangtang, Tibet. Based on geochemical characteristics of major, trace and rare earth elements and the geochemical diagram, the protolith of blueschists belongs to alkali basalt that is a skin to intraplate ocean island basalts, and formed on seamount-like structures under an intraplate plume. Together with the geological features, it shows that it presents a Palaeo-Tethyan ocean in the central Qiangtang area. Therefore, the area may represent the boundary between Gondwana and Laurasia continents during the Late Paleozoic period.
- Murphy, M. A., Yin, A., Kapp, P., Harrison, T. M., Manning, C. E., Ryerson, F. J., Ding, L., & Guo, J. H. (2002). Structural evolution of the Gurla Mandhata detachment system, southwest Tibet: Implications for the eastward extent of the Karakoram fault system. GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 114(4), 428-+.
- Ding, L., Zhong, D. L., Yin, A., Kapp, P., & Harrison, T. M. (2001). Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). EARTH AND PLANETARY SCIENCE LETTERS, 192(3), 423-438.
- Kapp, P. (2001). Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet: Reply. Geology, 29(1), 91-.
- Deng, X., Ding, L., Liu, X., Yin, A., Kapp, P. A., Murphy, M. A., & Manning, C. E. (2000). Discovery of blueschists in Gangmar-Taoxing Co area, central Qiangtang, Northern Tibet. Scientia Geologica Sinica, 35(2), 227-232.More infoAbstract: The blueschists, discovered in the Gangmar-Taoxing Co area, central Qiangtang, Northern Tibet, consist of glaucophane, ferroglaucophane, crossite, phengite, actinolite, epidote, chlorite, calcite, sphene, rutite, etc., with the metamorphic temperature 400°C ±, and pressure 7kbar ±, which demonstrates there occurred a high pressure metamorphic belt. The 39Ar - 40Ar dating from the glaucophane yields 275 - 287Ma, which comprehends the metamorphism being related to subduction of the Paleotethyan ocean. It is thought to extend southeastwards and link up with the Lancangjiang high pressure metamorphic belt in west Yunnan, constituting a very important tectonic boundary between Gondwana and Euroasia continents.
- Kapp, P., Yin, A., Manning, C. E., Murphy, M., Harrison, T. M., Spurlin, M., Lin, D., Deng, X. G., & Wu, C. M. (2000). Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet. GEOLOGY, 28(1), 19-22.
- Murphy, M. A., Yin, A., Kapp, P., Harrison, T. M., Lin, D., & Guo, J. H. (2000). Southward propagation of the Karakoram fault system, southwest Tibet: Timing and magnitude of slip. GEOLOGY, 28(5), 451-454.
- Axen, G. J., Fletcher, J. M., Cowgill, E., Murphy, M., Kapp, P., MacMillan, I., Ramos-Velaquez, E., & Aranda-Gomez, J. (1999). Range-front fault scarps of the Sierra El Mayor, Baja California: Formed above an active low-angle normal fault?. GEOLOGY, 27(3), 247-250.
- Yin, A., Kapp, P. A., Murphy, M. A., Manning, C. E., Harrison, T. M., Grove, M., Lin, D., Xi-Guang, D., & Cun-Ming, W. (1999). Significant late Neogene east-west extension in northern Tibet. Geology, 27(9), 787-790.More infoAbstract: Field mapping in northern Tibet reveals that the normal slip along late Cenozoic north-south-trending faults is comparable to that estimated for equivalent structures in southern Tibet. The orientation of fault striations in two north-south-trending rifts suggests an eastnortheast-west-northwest direction of extension in northern Tibet, which in turn implies that northeast-striking active faults in northern Tibet have significant left-slip components. Initiation of rifting in northern Tibet postdates the early Oligocene, and possibly occurred after 4 Ma. The broad similarities in the magnitude of slip and the direction of extension for normal faults in both northern and southern Tibet imply that the entire plateau has been extending. This precludes significant eastward extrusion of north Tibet relative to south Tibet and requires a regional boundary condition as the cause of east-west extension for the entire Tibet plateau.
Proceedings Publications
- Chapman, J. B., Robinson, A. C., Worthington, J., Carrapa, B., Kapp, P. A., Gadoev, M., & Illhom, O. (2015, Fall). Mesozoic shortening and syn-tectonic sedimentation in the southern Pamir: Implications for gneiss-dome metamorphism and crustal thickening. In Geological Society of America Fall Meeting, 47, 39.
- Licht, A., Adriens, R., Pullen, A., Kapp, P., Abels, H., Van, C., Vandenberghe, J., & Dupont-Nivet, G. (2014). Asian Winter Monsoons in the Eocene: Evidence from the Aeolian Dust Series of the Xining Basin. In AGU Fall Meeting 2014, PP43D--1498.
Presentations
- Chapman, J. B., Ducea, M. N., Gehrels, G. E., Kapp, P. A., & Dafov, M. N. (2016, Fall). Spatial isotopic trends in magmatism associated with Cordilleran orogens:. Geologocial Society of America Annual Meeting.
- Licht, A., Dupont-Nivet, G., Pullen, A., Kapp, P. A., Abels, H., Abell, J., & Giesler, D. (2016, Spring). Resilience of the Asian atmospheric circulation to paleogeographic and climatic changes. European Geophysical Union. Vienna.
- Licht, A., Pullen, A., Kapp, P. A., Abel, J., & Gielser, D. (2016, Spring). Reworked loess and Yellow RIver sediment as the main sources of the Chinese Loess Plateau. European Geophysical Union. Vienna.
- Kapp, P. A., Licht, A., Pullen, A., Abell, J., Abels, H., & Dupont-Nivet, G. (2015, Spring). Tracking the provenance of the dust deposits on the Chinese Loess Plateau through U-Pb dating of aeolian zircons: insights from large-n geochronological datasets. EGU General Assembly. Vienna.
- Kapp, P. A., Pullen, A., Pelletier, J. D., Russell, J., Goodman, P., & Cai, F. (2015, Fall). Quaternary wind erosion of the Mu Us Desert and Loess Plateau, China. The Batsheva de Rothschild Seminar on Atmospheric Dust, Dust Deposits (Loess) and Soils in Deserts and the Desert Fringe. Jerusalem, Israel.
- Licht, A., Pullen, A., Kapp, P. A., Abell, J., & Giesler, N. (2015, Fall). Sources of the Quaternary Chinese Loess Plateau strata based on U-Pb detrital zircon ages: implications for atmospheric circulation and internal recycling of the Loess Plateau. The Batsheva de Rothschild Sminar on Atmospheric Dust, Dust Deposits (Loess) and Soils in Deserts and the Desert Fringe. Jerusalem, Israel.
Poster Presentations
- Abell, J., Kapp, P. A., Pullen, A., & Licht, A. (2015, Spring). Geochronology study of the Loess Plateau for comparative statistical analyses and its effects on Asian paleoclimate. 3rd Annual Doug Shakel Student Poster Event, Arizona State University.
- Abell, J., Kapp, P. A., Pullen, A., & Licht, A. (2015, Spring). Geochronology study of the Loess Plateau for comparative statistical analyses and its effects on Asian paleoclimate. U. Arizona Department of Geosciences annual research symposium (Geodaze).
- Laskowski, A. K., & Kapp, P. A. (2015, Fall). The Lopu Kangri high-pressure metamorphic complex: A Tso Morari analog in southern Tibet. American Geophysical Union Fall Meeting. San Francisco.
- Metcalf, K., Kapp, P. A., & Orme, D. A. (2015, Fall). Dynamics and preservation potential of subduction complexes in continental sutures: A case study from the sedimentary-matrix melange of the Indus-Yarlung suture zone in southern Tibet. American Geophysical Union Fall Meeting.
- Maffione, M., van, H. D., Huang, W., Koornneef, L., Guilmette, C., Li, S., Borneman, N., Hodges, K., Kapp, P., & Lin, D. (2014). Kinematic evolution of the Yarlung Zangpo Suture Zone ophiolites (Southern Tibet): Early Cretaceous saloon-door spreading?. EGU. Vienna, Austria.More infoAbstract: 5792
- Carrapa, B., Orme, D., DeCelles, P., Kapp, P., Reiners, P., Lippert, P., Leary, R., & Waldrip, W. (2013). Rapid Miocene burial, exhumation and uplift of the suture zone in Tibet: Evidence from multi-proxy isotopic analysis of the Oligo-Miocene Kailas Formation. Geological Society of America.More infoVolume: 45, Pages: 889
- Hassim, M., Carrapa, B., Gehrels, G., Cosca, M., & Kapp, P. (2013). Detrital geochemical fingerprints of rivers along the Yalu Suture Zone in Tibet: Implications for drainage evolution, timing of arc development and erosion. AGU.More infoIn: Eos Trans; Abstract: T11A-2419
- Kapp, P., DeCelles, P., Carrapa, B., Waldrip, R., Ducea, M., Gehrels, G., Quade, J., Reiners, P., Lippert, P., Dupont-Nivet, G., & Ding, L. (2013). The cenozoic subduction history of Greater Indian lithosphere beneath Tibet. Himalayan Karakorum Tibet Workshop and International Symposium on Tibetan Plateau. Tubingen, Germany.
- Laskowski, A., & Kapp, P. (2013). Structural and geochronological record of India-Asia suturing int he Lopu Kangri Range, south-central Tibet. AGU.More infoIn: Eos Trans; Abstract: T11A-2416
- Metcalf, K., Kapp, P., Orme, D., & Laskowski, A. (2013). Proveanance of the Indus-Yarlung suture melange and the location of the India-Asia suture, southern Tibet. AGU.More infoIn: Eos Trans; Abstract: T13F-07
- Orme, D., Carrapa, B., Kapp, P., Gehrels, G., & Reiners, P. (2013). Basin evolution of the Cretaceous-Early Eocene Xigaze forearc, southern Tibet. AGU.More infoIn: Eos Trans; Abstract: T11A-2417
- Sundell, K., Taylor, M., Styron, R., Stockli, D., Kapp, P., Liu, D., & Ding, L. (2013). Constriction and Pliocene acceleration of east-west extension in the North Lunggar rift region of west-central Tibet. AGU.More infoIn: Eos Trans; Abstract: T43B-2663
- Waldrip, W., Ducea, M., & Kapp, P. (2013). Geochemical changes to arc magmatism in south central Tibet during the India-Asia collision. AGU.More infoIn: Eos Trans; Abstract: T11A-2415
- Waldrip, W., Ducea, M., & Kapp, P. (2013). Geochemistry of Cenozoic volcanic rocks in Tibet: Insight into deep-crustal and mantle processes during the transition from oceanic subduction to continental collision. Acta Geologica Sinica. Chengdu, China.More infoVolume: 87; Pages: 270-272
- Abbey, A., Hudson, A., Kapp, P., & Quade, J. (2012). Changes in lake areas on the Tibetan Plateau from 1972 to present. AGU.More infoIn: Eos Trans
- Heermance, R., Kapp, P., Pullen, A., & Garzione, C. (2012). A case for wind enhanced tectonics: Plio-Quaternary sedimentation, erosion, and structural evolution controlled by wind within the Qaidam Basin, China. AGU.More infoIn: Eos Trans
- Orme, D., Carrapa, B., Abbey, A., Kapp, P., & Ding, L. (2012). Basin evolution and exhumation of the Xigaze forearc, southern Tibet: Insight from sedimentology, stratigraphy, and geo-thermochronology. AGU.More infoIn: Eos Trans
- Pearson, D., Kapp, P., Reiners, P., & Gehrels, G. (2012). Control of pre-Cenozoic extensional heterogeneities on the kinematics of Cenozoic shortening, Northwestern Argentina. AGU.More infoIn: Eos Trans
Reviews
- DeCelles, P. G., Ducea, M. N., Kapp, P., & Zandt, G. (2009. Cyclicity in Cordilleran orogenic systems(pp 251-257).
Others
- Ducea, M. N., DeCelles, P., Kapp, P., & Zandt, G. (2009, JUN). Cyclicity in Cordilleran orogenic systems and the role of arc magmatism. GEOCHIMICA ET COSMOCHIMICA ACTA.