Lisa K Elfring
- Vice Provost, Assessment, Teaching and Technology
- Specialist, Biology Education
- Member of the Graduate Faculty
- Professor, BIO5 Institute
- (520) 621-1671
- MP Integrated Learning Center, Rm. 101
- Tucson, AZ 85721
- elfring@arizona.edu
Biography
I have been in love with biology since I was four years old, when I would look through my mother's nursing textbooks and ask about what the pictures meant. After high-school and undergraduate research projects, a research project on mammary-gland development opened my eyes to the excitement of biology research. My fascination with how genes control the development of animal embryos led me to graduate and postdoctoral research using the fruit fly Drosophila melanogaster as my experimental organism.
In contemplating how I wanted to contribute as a professional to the field of biology, I realized the most rewarding parts for me were the interactions I had with students and the general public, helping them understand how my work related to big questions in biology. This led me to pursue a teaching pathway. I was fortunate to work early in my career with middle- and high-school biology teachers; I helped them increase their understanding of biology and science research, and they guided me, with patience and feedback, to strengthen my skills in applying evidence-based teaching strategies. I eventually taught undergraduate biology classes in biochemistry, molecular, and cellular biology to a broad range of learners.
I have now taught at the University of Arizona for over 25 years, engaging with students including high-school interns, first-year college students, and medical and graduate students, and everyone in between. I spent many years working to improve learning in large-enrollment introductory-biology courses and teaching smaller classes that helped students to find their own voices and pathways in the life sciences. It always makes my day when I hear from a former student who shares how they are using what they learned in their chosen profession.
In 2016, I transitioned away from most of my teaching to lead the University of Arizona's Office of Instruction and Assessment, which supports the entire University community of instructors by providing technical tools, training, and support in using learning-assessment data to improve teaching. It is a tremendous honor to work with this talented group of people to build teaching capacity across the University of Arizona. We recently merged with another unit and became the University Center for Assessment, Teaching, and Technology (UCATT), and I am excited by the opportunities this merger has opened up to provide more seamless support for instructors in all aspects of their teaching journey.
Degrees
- Ph.D. Molecular, Cell, and Developmental Biology
- University of California, Santa Cruz, California, United States
- Genetic and molecular analysis of the Drosophila brahma (brm) locus
- B.A. Biology
- University of California, Santa Cruz, California, United States
Work Experience
- University of Arizona, Tucson, Arizona (2023 - Ongoing)
- University of Arizona, Tucson, Arizona (2022 - Ongoing)
- University of Arizona, Tucson, Arizona (2019 - 2023)
- University of Arizona, Tucson, Arizona (2019 - 2022)
- University of Arizona, Tucson, Arizona (2016 - 2019)
- University of Arizona, Tucson, Arizona (2007 - 2019)
- University of Arizona, Tucson, Arizona (2002 - 2007)
- University of Arizona, Tucson, Arizona (1998 - 2002)
- Whitehead Institute for Biomedical Research (1994 - 1998)
Awards
- UA College of Science Galileo Circle Copernicus Award
- University of Arizona College of Science, Spring 2016
- UA Honors College Excellence in Teaching Award
- University of Arizona Honors College, Spring 2016
- AAAS/American Physiological Society BioScience Ed Net Fellowship
- American Association for the Advancement of Science/American Physiological Society, Spring 2012
- UA College of Science Distinguished Advising Award
- University of Arizona College of Science, Spring 2011
- Arizona BioScience Educator of the Year
- Arizona BioIndustry Association, Fall 2010 (Award Nominee)
- American Society for Microbiology Biology Scholars Research Residency
- American Society for Microbiology, Spring 2010
- Mortar Board Faculty Recognition Award
- Mortar Board Honorary, Spring 2008
- UA College of Science Excellence in Science Education Award
- University of Arizona College of Science, Fall 2007
- National Academies of Science Education Fellowship in the Life Sciences
- National Academies of Science, Summer 2005
- American Cancer Society Postdoctoral Fellowship
- American Cancer Society, Spring 2005
Interests
Research
My research focuses on student learning in science, technology, engineering, and math (STEM) and on how faculty members refine and improve their teaching. Recently, I was involved in an NSF project focused on supporting instructors as they learn to use active-learning strategies in large STEM courses. At times, my "laboratory" has my undergraduate biology classroom. I am interested in how students can use quantitative skills to increase their understanding of biological processes; how students use evidence to reason about biology; and how instructional approaches impact student learning. I am also interested in how instructors learn to become more effective teachers through the use of evidence-based teaching methods, strategies that utilize teaching teams in large STEM classes, and how departmental and institutional structures can provide incentives for helping instructors to do the hard work of becoming better teachers.
Teaching
We all have bodies, and we need to understand how they work and what happens when they do not work well. For that reason, an understanding of biology is essential for every single person in our society. When I am teaching, my "research lab" is my class, which most recently has been MCB 442 (Human Genetics: Sex, Crime, and Disease). I spent many years teaching MCB181R, Introduction to Cell and Molecular Biology; and MCB 410, Cell Biology, as well as other courses. I use evidence-based teaching approaches to promote conceptual understanding and equity in the classroom. My goal is that every student should learn deeply about the areas of biology most relevant to their lives and careers; and that each person learns strategies for learning that will serve them no matter what they are trying to learn.
Courses
2024-25 Courses
-
Intro to General Ed Experience
UNIV 101 (Fall 2024)
2023-24 Courses
-
KEYS Research
MCB 103 (Summer I 2024) -
Human Gen: Sex,Crime & Disease
MCB 442 (Spring 2024)
2022-23 Courses
-
KEYS Research
MCB 103 (Summer I 2023) -
Human Gen: Sex,Crime & Disease
MCB 442 (Spring 2023) -
Intro to General Ed Experience
UNIV 101 (Fall 2022)
2021-22 Courses
-
KEYS Research
MCB 103 (Summer I 2022) -
Human Gen: Sex,Crime & Disease
MCB 442 (Spring 2022) -
Instructional Management
IA 496M (Fall 2021)
2020-21 Courses
-
Human Gen: Sex,Crime & Disease
MCB 442 (Fall 2020)
2019-20 Courses
-
Special Topics in Science
HNRS 195I (Spring 2020)
2018-19 Courses
-
Special Topics in Science
HNRS 195I (Spring 2019) -
Directed Rsrch
MCB 492 (Fall 2018)
2017-18 Courses
-
Special Topics in Science
HNRS 195I (Spring 2018) -
Thesis
BIOC 910 (Fall 2017)
2016-17 Courses
-
Honors Thesis
MCB 498H (Spring 2017) -
Cell&Development Biology
MCB 305 (Fall 2016) -
Honors Thesis
MCB 498H (Fall 2016) -
Introductory Biology I
MCB 181R (Fall 2016) -
Special Tutoring Wkshp
MCB 497A (Fall 2016)
2015-16 Courses
-
Secondary Biol Lab Curr
BIOC 633 (Summer I 2016) -
Cell Biology
MCB 410 (Spring 2016) -
Directed Rsrch
MCB 492 (Spring 2016) -
MCB Special Topics Seminar
MCB 396 (Spring 2016)
Scholarly Contributions
Chapters
- Burd, G. D., Tomanek, D. J., Blowers, P., Bolger, M. S., Cox, J., Elfring, L. K., Grubbs, E. A., Hunter, J., Johns, K. A., Lazos, L., Lysecky, R. L., Milsom, J. A., Novodvorsky, I., Pollard, J. R., Prather, E. E., Talanquer, V. A., Thamvichai, R., Tharp, H. S., & Wallace, C. (2016). Developing faculty cultures for evidence-based teaching practices in STEM: A progress report.. In Transforming Institutions: 21st Century Undergraduate STEM. West Lafayette, IN.: Purdue University Press.
- Burd, G. D., Tomanek, D. J., Blowers, P., Bolger, M. S., Cox, J., Elfring, L. K., Grubbs, E. A., Hunter, J., Johns, K. A., Lazos, L., Lysecky, R. L., Milsom, J. A., Novodvorsky, I., Pollard, J. R., Prather, E. E., Talanquer, V. A., Thamvichai, R., Tharp, H. S., Wallace, C., , Burd, G. D., et al. (2015). Developing faculty cultures for evidence-based teaching practices in STEM: A progress report.. In Transforming Institutions: 21st Century Undergraduate STEM. West Lafayette, IN.: Purdue University Press.
Journals/Publications
- Talanquer, V. A., Lattimore, K. L., Blowers, P., Elfring, L. K., Kim, Y. A., Hidalgo, L. V., Navis, L. K., Elliott, J. M., & Hester, S. D. (2022). Using an instructional team during pandemic remote teaching enhanced student outcomes in a large STEM course. Journal of College Science Teaching.
- Hester, S. D., Southard, K. M., Kim, Y. A., Cox, J., Elfring, L. K., Blowers, P., & Talanquer, V. (2021). Benefits and Challenges in the Implementation of an Instructional-Teams Model for Supporting Evidence-Based Instructional Practices in Large-Enrollment STEM Courses. College Teaching, 71(3), 143-154. doi:10.1080/87567555.2021.1996323
- Southard, K. M., Kim, Y. A., Maximillian, J., Eadie, E. C., Rezende, L. F., Talanquer, V. A., Elfring, L. K., Blowers, P., Southard, K. M., Kim, Y. A., Maximillian, J., Eadie, E. C., Rezende, L. F., Talanquer, V. A., Elfring, L. K., & Blowers, P. (2021). Responsive Teaching in Online Learning Environments: Using an Instructional Team to Promote Formative Assessment and Sense of Community. Journal of College Science Teaching, 50(4).
- Southard, K. M., Kim, Y. A., Talanquer, V. A., Cox, J. T., Elfring, L. K., & Blowers, P. (2021). Learning Researchers: Promoting Formative Assessment in STEM Courses. Journal of College Science Teaching, 48(5), 36-41.
- Talanquer, V. A., Blowers, P., Elfring, L. K., Cox, J. T., Kim, Y. A., Curry, J. E., Jurkiewicz, J., Hester, S. D., & Southard, K. M. (2021). A close look at change: the role of community on an instructor's evolution during instructional reform. Disciplinary and Interdisciplinary Science Education Research.
- Talanquer, V. A., Blowers, P., Elfring, L. K., Cox, J. T., Kim, Y. A., Southard, K. M., & Hester, S. D. (2021). Benefits and challenges in the implementation of an Instructional-Teams Model for supporting evidence-based instructional practices in large-enrollment STEM courses. College Teaching.
- Neilsen, H., Monroe, E., Southard, K. M., Cox, J. T., Elfring, L. K., Kim, Y. A., Talanquer, V. A., & Blowers, P. (2020). Exploring Undergraduate Students' Abilities to Collect and Interpret Formative Assessment Data. Journal of Chemical Education, 97, 4245-4254.
- Bolger, M. S., Rezende, L. F., Dykstra, E. M., Elfring, L. K., Katcher, J., Nadler, M., & Hester, S. D. (2018). Authentic Inquiry through Modeling in Biology (AIM-Bio): An Introductory Laboratory Curriculum that Increases Undergraduates' Scientific Agency and Skills.. CBE: Life Science Education, 17(4), ar63.
- Hester, S. D., Nadler, M., Katcher, J., Elfring, L. K., Dykstra, E., Rezende, L. F., & Bolger, M. S. (2018). Authentic Inquiry through Modeling in Biology (AIM-Bio): An Introductory Laboratory Curriculum That Increases Undergraduates’ Scientific Agency and Skills. CBE—Life Sciences Education, 17(4), ar63. doi:10.1187/cbe.18-06-0090
- Elfring, L. K. (2017). Engaging students in the large‐lecture biology classroom. The FASEB Journal, 31(S1). doi:10.1096/fasebj.31.1_supplement.105.2More infoConference proceedings for the American Society of Biochemistry and Molecular Biology meeting
- Hester, S., Buxner, S., Elfring, L., & Nagy, L. (2014). Integrating Quantitative Thinking into an Introductory Biology Course Improves Students’ Mathematical Reasoning in Biological Contexts. CBE—Life Sciences Education, 13(1), 54-64. doi:10.1187/cbe.13-07-0129
- Hester, S., Buxner, S., Elfring, L., & Nagy, L. (2014). Integrating quantitative thinking into an introductory biology course improves students' mathematical reasoning in biological contexts. CBE Life Sciences Education, 13(1), 54-64.More infoAbstract: Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students' understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students' inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students' biology learning. © 2014 S. Hester et al.
- Baldwin, T. O., Elfring, L., & Offerdahl, E. (2008). Ph.D. in Biochemistry (Education)!. Biochemistry and Molecular Biology Education, 36(4), 251-252.More infoPMID: 21591202;
- Baldwin, T. O., Elfring, L., Offerdahl, E. G., Vierling, E., & Ziegler, M. M. (2008). Reading Questions in Large-Lecture Courses: Limitations and Unexpected Outcomes.. The journal of college science teaching, 37(4), 43-47.
- Lee, L. A., Elfring, L. K., Bosco, G., & Orr-Weaver, T. L. (2001). A genetic screen for suppressors and enhancers of the Drosophila PAN GU cell cycle kinase identifies cyclin B as a target. Genetics, 158(4), 1545-1556.More infoPMID: 11514446;PMCID: PMC1461742;Abstract: The early cell cycles of Drosophila embryogenesis involve rapid oscillations between S phase and mitosis. These unique S-M cycles are driven by maternal stockpiles of components necessary for DNA replication and mitosis. Three genes, pan gu (png), plutonium (plu), and giant nuclei (gnu) are required to control the cell cycle specifically at the onset of Drosophila development by inhibiting DNA replication and promoting mitosis. PNG is a protein kinase that is in a complex with PLU. We employed a sensitized png mutant phenotype to screen for genes that when reduced in dosage would dominantly suppress or enhance png. We screened deficiencies covering over 50% of the autosomes and identified both enhancers and suppressors. Mutations in eIF-5A and PP1 87B dominantly suppress png. Cyclin B was shown to be a key PNG target. Mutations in cyclin B dominantly enhance png, whereas png is suppressed by cyclin B overexpression. Suppression occurs via restoration of Cyclin B protein levels that are decreased in png mutants. The plu and gnu phenotypes are also suppressed by cyclin B overexpression. These studies demonstrate that a crucial function of PNG in controlling the cell cycle is to permit the accumulation of adequate levels of Cyclin B protein.
- Fenger, D. D., Carminati, J. L., Burney-Sigman, D., Kashevsky, H., Dines, J. L., Elfring, L. K., & Orr-Weaver, T. (2000). PAN GU: A protein kinase that inhibits S phase and promotes mitosis in early Drosophila development. Development, 127(22), 4763-4774.More infoPMID: 11044392;Abstract: Following completion of meiosis, DNA replication must be repressed until fertilization. In Drosophila, this replication block requires the products of the pan gu (png), plutonium (plu) and giant nuclei (gnu) genes. These genes also ensure that S phase oscillates with mitosis in the early division cycles of the embryo. We have identified the png gene and shown that it encodes a Ser/Thr protein kinase expressed only in ovaries and early embryos, and that the predicted extent of kinase activity in png mutants inversely correlates with the severity of the mutant phenotypes. The PLU and PNG proteins form a complex that has PNG-dependent kinase activity, and this activity is necessary for normal levels of mitotic cyclins. Our results reveal a novel protein kinase complex that controls S phase at the onset of development apparently by stabilizing mitotic cyclins.
- Elfring, L. K., Daniel, C., Papoulas, O., Deuring, R., Sarte, M., Moseley, S., Beek, S. J., Waldrip, W. R., Daubresse, G., DePace, A., Kennison, J. A., & Tamkun, J. W. (1998). Genetic analysis of brahma: The drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Genetics, 148(1), 251-265.More infoPMID: 9475737;PMCID: PMC1459776;Abstract: The Drosophila brahma (brm) gene encodes an activator of homeotic genes related to the yeast chromatin remodeling factor SWI2/SNF2. Here, we report the phenotype of null and dominant-negative brm mutations. Using mosaic analysis, we found that the complete loss of brm function decreases cell viability and causes defects in the peripheral nervous system of the adult. A dominant-negative brm mutation was generated by replacing a conserved lysine in the ATP-binding site of the BRM protein with an arginine. This mutation eliminates brm function in vivo but does not affect assembly of the 2-MD BRM complex. Expression of the dominant-negative BRM protein caused peripheral nervous system defects, homeotic transformations, and decreased viability. Consistent with these findings, the BRM protein is expressed at relatively high levels in nuclei throughout the developing organism. Site-directed mutagenesis was used to investigate the functions of conserved regions of the BRM protein. Domain II is essential for brm function and is required for the assembly or stability of the BRM complex. In spite of its conservation in numerous eukaryotic regulatory proteins, the deletion of the bromodomain of the BRM protein has no discernible phenotype.
- Elfring, L. K., Axton, J. M., Fenger, D. D., Page, A. W., Carminati, J. L., & Orr-Weaver, T. L. (1997). Drosophila PLUTONIUM protein is a specialized cell cycle regulator required at the onset of embryogenesis. Molecular Biology of the Cell, 8(4), 583-593.More infoPMID: 9247640;PMCID: PMC276111;Abstract: Unfertilized eggs and fertilized embryos from Drosophila mothers mutant for the plutonium (plu) gene contain giant polyploid nuclei resulting from unregulated S-phase. The PLU protein, a 19-kDa ankyrin repeat protein, is present in oocytes and early embryos but is not detectable after the completion of the initial rapid S-M cycles of the embryo. The persistence of the protein during the early embryonic divisions is consistent with a direct role in linking S-phase and M-phase. When ectopically expressed in the eye disc, PLU did not perturb the cell cycle, suggesting that PLU regulates S- phase only in early embryonic development. The pan gu (png) and giant nuclei (gnu) genes also affect the S-phase in the unfertilized egg and early embryo. We show that functional png is needed for the presence of PLU protein. By analyzing png mutations of differing severity, we find that the extent of the png mutant phenotype inversely reflects the level of PLU protein. Our data suggest that PLU protein is required at the time of egg activation and the completion of meiosis.
- Brizuela, B. J., Elfring, L., Ballard, J., Tamkun, J. W., & Kennison, J. A. (1994). Genetic analysis of the brahma gene of Drosophila melanogaster and polytene chromosome subdivisions 72AB. Genetics, 137(3), 803-813.More infoPMID: 7916308;PMCID: PMC1206040;Abstract: The brahma gene is required for activation of the homeotic genes of the Antennapedia and bithorax complexes in Drosophila. We have isolated and characterized 21 mutations in brahma. We show that both maternal and zygotic functions of brahma are required during embryogenesis. In addition, the severe abnormalities caused by loss of maternal brahma expression show that the homeotic genes are not the only targets for brahma activation. The complex pattern of interallelic complementation for the 21 brahma alleles suggests that brahma may act as a multimer. In addition to mutations in brahma, we have isolated mutations in four other essential genes within polytene chromosome subdivisions 72AB. Based on a compilation of similar studies that include about 24% of the genome, we estimate that about 3600 genes in Drosophila can inutate to cause recessive lethality, with fewer than 900 additional genes essential only for gametogenesis. We have identified three more transcripts than lethal complementation groups in 72AB. One transcript in 72AB is the product of the essential arflike gene and encodes a member of the ARF subfamily of small GTP-binding proteins. Two other transcripts are probably the products of a single gene whose protein products are similar to the catalytic subunits of cAMP-dependent protein kinases.
- Elfring, L. K., Deuring, R., Mccallum, C. M., Peterson, C. L., & Tamkun, J. W. (1994). Identification and characterization of Drosophila relatives of the yeast transcriptional activator SNF2/SWI2. Molecular and Cellular Biology, 14(4), 2225-2234.More infoPMID: 7908117;PMCID: PMC358589;Abstract: The Drosophila brahma (brm) gene encodes an activator of homeotic genes that is highly related to the yeast transcriptional activator SWI2 (SNF2), a potential helicase. To determine whether brm is a functional homolog of SWI2 or merely a member of a family of SWI2-related genes, we searched for additional Drosophila genes related to SWI2 and examined their function in yeast cells. In addition to brm, we identified one other Drosophila relative of SWI2: the closely related ISWI gene. The 1,027-residue ISWI protein contains the DNA-dependent ATPase domain characteristic of the SWI2 protein family but lacks the three other domains common to brm and SWI2. In contrast, the ISWI protein is highly related (70% identical) to the human hSNF2L protein over its entire length, suggesting that they may be functional homologs. The DNA-dependent ATPase domains of brm and SWI2, but not ISWI, are functionally interchangeable; a chimeric SWI2-brm protein partially rescued the slow growth of swi2- cells and supported transcriptional activation mediated by the glucocorticoid receptor in vivo in yeast cells. These findings indicate that brm is the closest Drosophila relative of SWI2 and suggest that brm and SWI2 play similar roles in transcriptional activation.
Proceedings Publications
- Elfring, L. K., Novodvorsky, I., Quintenz, J., Talanquer, V., & Slater, T. F. (2007, December). Impact of Including Authentic Inquiry Experiences in Methods Courses for Pre-Service Secondary Teachers. In American Geophysical Union.More infoScience education reform documents universally call for students to have authentic and meaningful experiences using real data in the context of their science education. The underlying philosophical position is that students analyzing data can have experiences that mimic actual research. In short, research experiences that reflect the scientific spirit of inquiry potentially can: prepare students to address real world complex problems; develop students' ability to use scientific methods; prepare students to critically evaluate the validity of data or evidence and of the consequent interpretations or conclusions; teach quantitative skills, technical methods, and scientific concepts; increase verbal, written, and graphical communication skills; and train students in the values and ethics of working with scientific data. However, it is unclear what the broader pre-service teacher preparation community is doing in preparing future teachers to promote, manage, and successful facilitate their own students in conducting authentic scientific inquiry. Surveys of undergraduates in secondary science education programs suggests that students have had almost no experiences themselves in conducting open scientific inquiry where they develop researchable questions, design strategies to pursue evidence, and communicate data-based conclusions. In response, the College of Science Teacher Preparation Program at the University of Arizona requires all students enrolled in its various science teaching methods courses to complete an open inquiry research project and defend their findings at a specially designed inquiry science mini-conference at the end of the term. End-of-term surveys show that students enjoy their research experience and believe that this experience enhances their ability to facilitate their own future students in conducting open inquiry.
Presentations
- Elfring, L. K., Rezende, L. F., Lattimore, K. L., & Hester, S. D. (2021). An Instructional-Teams Project for supporting instructional reform. 2021 ASCN Transforming Institutions Conference.
- Southard, K. M., Kim, Y. A., Talanquer, V. A., Cox, J. T., Elfring, L. K., & Blowers, P. (2020, March). A Close Look at Change: Understanding Factors that Shape Instructor Evolution during Instructional Reform Efforts. NARST Annual Conference. Portland, OR: NARST.
- Southard, K. M., Kim, Y. A., Talanquer, V. A., Cox, J. T., Elfring, L. K., & Blowers, P. (2020, March). Engaging Undergraduate Learning Assistants in Formative Assessment in Large STEM Classes. NARST Annual Meeting. Portland, OR: NARST.
- Bolger, M. S., White, C., Nadler, M., Pepic, V., Katcher, J., Elfring, L. K., Dykstra, E. M., & Hester, S. D. (2017). Model-Based Inquiry in an Undergraduate Biology Laboratory Course. Society for the Advancement of Biology Education Research (SABER) Annual ConferenceSociety for the Advancement of Biology Education Research (SABER).
- Cox, J., Elfring, L. K., & Bolger, M. S. (2017, January). The University of Arizona AAU Undergraduate STEM Education Project. Society for the Advancement of Biology Education - WEST.
- Donahue, J. L., Prather, E. E., Pollard, J. R., Elfring, L. K., & Blowers, P. (2018, Spring). Engaging Students in Learning Through Interactive Teaching. Graduate Center and Postdoctoral Affairs. BIO5/Thomas W. Keating Building, Room B103, Tucson, AZ: Graduate Center and Postdoctoral Affairs.
- Hester, S. D., Southard, K. M., Wince, T., Elfring, L. K., Nagy, L. M., & Bolger, M. S. (2016, July). Probabilistic Reasoning in Undergraduate Genetics ProblemSolving. Society for the Advancement of Biology Education Research.