Christopher W Hamilton
- Associate Professor, Planetary Sciences
- Associate Professor, Lunar and Planetary Laboratory
- Associate Professor, Geosciences
- Member of the Graduate Faculty
- (520) 626-1993
- KUIPER SPACE SC, Rm. 325
- TUCSON, AZ 85721-0092
- chamilton@arizona.edu
Biography
Dr. Hamilton's research focuses on geological surface processes to better understand the evolution of the Earth and other planetary bodies. His specialty relates to volcanology and specifically to lava flows, magma–water interactions, and explosive eruptions using a combination of field observations, remote sensing, geospatial analysis, and geophysical modeling. These topics provide insight into (1) the evolution of planetary interiors, surfaces, and atmospheres through magma production, ascent, and volcanism; (2) hydrothermal systems; and (3) comparative planetology and climatology.
Degrees
- Ph.D. Geology and Geophysics
- University of Hawaii, Manoa, Hawaii, United States of America
- Explosive Lava-Water Interactions on Earth and Mars
- B.S. Earth Sciences
- Dalhousie University, Halifax, Nova Scotia, Canada
- Ice-Contact Volcanism in the Vifilsfell Region, Southwest Iceland
Work Experience
- NASA Goddard Space Flight Center (GSFC) (2013 - 2014)
- NASA Goddard Space Flight Center (GSFC) (2011 - 2013)
Awards
- NASA Faculty Fellowship
- Marshall Space Flight Center, Summer 2018
- Geological Society of America (GSA) Early Career Award
- Mineralogy, Geochemistry, Petrology and Volcanology Division, Spring 2018
- NASA Early Career Fellowship (Step 2 Selection)
- NASA, Spring 2015
- NASA Early Career Fellowship (Step 1 Selection)
- NASA, Spring 2014
Interests
Research
VolcanologyPlanetary Surface ProcessesMachine LearningRobotics
Teaching
Geological Remote SensingPlanetary Surface ProcessesPlanetary HabitabilityVolcanology
Courses
2024-25 Courses
-
Research
GEOS 900 (Spring 2025) -
Independent Study
PTYS 599 (Fall 2024)
2023-24 Courses
-
Directed Research
PTYS 492 (Spring 2024) -
Solar System Geology
GEOS 411 (Spring 2024) -
Solar System Geology
PTYS 411 (Spring 2024) -
Volcano:Phys Proc+Petrol
GEOS 470R (Spring 2024) -
Volcano:Phys Proc+Petrol
GEOS 570R (Spring 2024) -
Planetary Geol Field Std
PTYS 590 (Fall 2023) -
Research
GEOS 900 (Fall 2023)
2022-23 Courses
-
Dissertation
PTYS 920 (Fall 2022) -
Planetary Geol Field Std
PTYS 590 (Fall 2022)
2021-22 Courses
-
Dissertation
PTYS 920 (Spring 2022) -
Honors Thesis
PTYS 498H (Spring 2022) -
Independent Study
PTYS 599 (Spring 2022) -
Solar System Geology
GEOS 411 (Spring 2022) -
Solar System Geology
PTYS 411 (Spring 2022) -
Volcano:Phys Proc+Petrol
GEOS 470R (Spring 2022) -
Volcano:Phys Proc+Petrol
GEOS 570R (Spring 2022) -
Dissertation
PTYS 920 (Fall 2021) -
Honors Thesis
PTYS 498H (Fall 2021) -
Planetary Geol Field Std
PTYS 590 (Fall 2021)
2020-21 Courses
-
Honors Independent Study
HNRS 399H (Summer I 2021) -
Dissertation
PTYS 920 (Spring 2021) -
Dissertation
PTYS 920 (Fall 2020)
2019-20 Courses
-
Dissertation
PTYS 920 (Spring 2020) -
Research
PTYS 900 (Spring 2020) -
Solar System Geology
GEOS 411 (Spring 2020) -
Solar System Geology
HWRS 411 (Spring 2020) -
Solar System Geology
PTYS 411 (Spring 2020) -
Dissertation
PTYS 920 (Fall 2019) -
Planetary Geol Field Std
PTYS 594A (Fall 2019) -
Research
PTYS 900 (Fall 2019)
2018-19 Courses
-
Dissertation
PTYS 920 (Spring 2019) -
Research
PTYS 900 (Spring 2019) -
Dissertation
PTYS 920 (Fall 2018) -
Planetary Geol Field Std
PTYS 594A (Fall 2018)
2017-18 Courses
-
Honors Thesis
GEOS 498H (Spring 2018) -
Research
PTYS 900 (Spring 2018) -
Solar System Geology
GEOS 411 (Spring 2018) -
Solar System Geology
HWRS 411 (Spring 2018) -
Solar System Geology
PTYS 411 (Spring 2018) -
Honors Thesis
GEOS 498H (Fall 2017) -
Planetary Geol Field Std
PTYS 594A (Fall 2017) -
Plnt Earth:Evl Hab World
ASTR 170A1 (Fall 2017) -
Plnt Earth:Evl Hab World
PTYS 170A1 (Fall 2017) -
Research
PTYS 900 (Fall 2017) -
Spec Tops in Planetary Science
PTYS 595B (Fall 2017)
2016-17 Courses
-
Research
PTYS 900 (Spring 2017) -
Independent Study
PTYS 599 (Fall 2016) -
Planetary Geol Field Std
PTYS 594A (Fall 2016)
2015-16 Courses
-
Honors Independent Study
PTYS 499H (Spring 2016) -
Independent Study
PTYS 599 (Spring 2016) -
Solar System Geology
GEOS 411 (Spring 2016) -
Solar System Geology
PTYS 411 (Spring 2016)
Scholarly Contributions
Journals/Publications
- Nerozzi, S., Christoffersen, M. S., Holt, J. W., & Hamilton, C. W. (2023). Evidence of Widespread Volcanic Activity near Hebrus Valles on Mars Revealed by SHARAD. Remote Sensing, 15(20), 4967.
- Voigt, J., Hamilton, C., Steinbr{\"ugge}, G., Christoffersen, M., Nerozzi, S., Kerber, L., Holt, J., & Carter, L. (2023). Revealing Elysium Planitia's Young Geologic History: Constraints on Lava Emplacement, Areas, and Volumes. Journal of Geophysical Research (Planets), 128(12), e2023JE007947.
- Duhamel, S., Hamilton, C. W., P{\'alsson}, S., & Bj{\"ornsd\'ottir}, S. H. (2022). Microbial Response to Increased Temperatures Within a Lava-Induced Hydrothermal System in Iceland: An Analogue for the Habitability of Volcanic Terrains on Mars. Astrobiology, 22(10), 1176-1198.
- Pedersen, G. B., Belart, J. M., {\'Oskarsson}, B. V., Gudmundsson, M. T., Gies, N., H{\"ognad\'ottir}, T., Hjartard{\'ottir}, \. R., Pinel, V., Berthier, E., D{\"urig}, T., Reynolds, H. I., Hamilton, C. W., Valsson, G., Einarsson, P., Ben-Yehosua, D., Gunnarsson, A., & Oddsson, B. (2022). Volume, Effusion Rate, and Lava Transport During the 2021 Fagradalsfjall Eruption: Results From Near Real-Time Photogrammetric Monitoring. \grl, 49(13), e97125.
- Stadermann, A. C., Jolliff, B. L., Krawczynski, M. J., Hamilton, C. W., & Barnes, J. J. (2022). Analysis and experimental investigation of Apollo sample 12032,366-18, a chemically evolved basalt from the Moon. \maps, 57(4), 794-816.
- Sutton, S. S., Hamilton, C. W., Cataldo, V., Williams, D. A., & Bleacher, J. E. (2022). Sinuous channels east of Olympus Mons, Mars: Implications for volcanic, hydrological, and tectonic processes. \icarus, 374, 114798.
- Hamilton, C. W., & Duhamel, S. (2021). How microbes in Iceland can teach us about possible life on Mars?. Futurum Careers, 7, 22 – 25. doi:10.33424/FUTURUM112
- Horvath, D. G., Moitra, P., Hamilton, C. W., Craddock, R. A., & Andrews-Hanna, J. C. (2021). Evidence for geologically recent explosive volcanism in Elysium Planitia, Mars. \icarus, 365, 114499.
- Lev, E., Hamilton, C. W., Voigt, J. R., Stadermann, A. C., Zhan, Y., & Neish, C. D. (2021). Emplacement conditions of lunar impact melt flows. \icarus, 369, 114578.
- Schaefer, E., Hamilton, C., Neish, C., Sori, M., Bramson, A., & Beard, S. (2021). Reexamining the Potential to Classify Lava Flows From the Fractality of Their Margins. Journal of Geophysical Research (Solid Earth), 126(5), e20949.
- Voigt, J. R., Hamilton, C. W., Scheidt, S. P., M{\"unzer}, U., H{\"oskuldsson}, \., J{\'onsdottir}, I., & Thordarson, T. (2021). Geomorphological characterization of the 2014-2015 Holuhraun lava flow-field in Iceland. Journal of Volcanology and Geothermal Research, 419, 107278.
- Voigt, J. R., Hamilton, C. W., Steinbr{\"ugge}, G., & Scheidt, S. P. (2021). Surface roughness characterization of the 2014-2015 Holuhraun lava flow-field in Iceland: implications for facies mapping and remote sensing. Bulletin of Volcanology, 83(12), 82.
- Aleinov, I., Way, M. J., Hamilton, C. W., & Head, J. W. (2020). Lunar Near-Surface Volatile Sample Return. arXiv e-prints, arXiv:2009.04691.
- Hamilton, C. W., Scheidt, S. P., Sori, M. M., Wet, A. P., Bleacher, J. E., Mouginis-Mark, P. J., Self, S., Zimbelman, J. R., Garry, W. B., Whelley, P. L., & Crumpler, L. S. (2020). Lava-Rise Plateaus and Inflation Pits in the McCartys Lava Flow Field, New Mexico: An Analog for P\={a}hoehoe-Like Lava Flows on Planetary Surfaces. Journal of Geophysical Research (Planets), 125(7), e05975.
- Horvath, D. G., Moitra, P., Hamilton, C. W., Craddock, R. A., & Andrews-Hanna, J. C. (2020). Evidence for geologically recent explosive volcanism in Elysium Planitia, Mars. arXiv e-prints, arXiv:2011.05956.
- Steinbr{\"ugge}, G., Voigt, J., Wolfenbarger, N., Hamilton, C., Soderlund, K., Young, D., Blankenship, D., Vance, S., & Schroeder, D. (2020). Brine Migration and Impact-Induced Cryovolcanism on Europa. \grl, 47(21), e90797.
- Steinbrügge, G., Voigt, J., Schroeder, D. M., Stark, A., Haynes, M. S., Scanlan, K. M., Hamilton, C. W., Young, D. A., Hussmann, H., Grima, C., & Blankenship, D. D. (2020). The surface roughness of Europa derived from Galileo stereo images. Icarus, 343, 113669.
- Bonnefoy, L., Hamilton, C., Scheidt, S., Duhamel, S., H{\"oskuldsson}, \., J{\'onsdottir}, I., Thordarson, T., & M{\"unzer}, U. (2019). Landscape evolution associated with the 2014-2015 Holuhraun eruption in Iceland. Journal of Volcanology and Geothermal Research, 387, 106652.
- Hamilton, C. W. (2019). “Fill and spill” lava flow emplacement: Implications for understanding planetary flood basalt eruptions.. In: NF Six and G Karr (Eds.), NASA Technical Memorandum: Marshall Space Flight Center Faculty Fellowship Program, NASA/TM0-2019-220139, M-1490(M19-7746), 47–56.
- Morrison, A. A., Zanetti, M., Hamilton, C. W., Lev, E., Neish, C. D., & Whittington, A. G. (2019). Rheological investigation of lunar highland and mare impact melt simulants. Icarus, 317, 307 - 323.
- Hamilton, C. W., Byrne, S., Barnard, K. J., Rodriguez, J. J., Morrison, C. T., Palafox, L. F., & Savage, R. (2018). A Bayesian Approach to Sub-Kilometer Crater Shape Analysis using Individual HiRISE Images. Transactions on Geoscience and Remote Sensing.
- Hamilton, C. W., Mouginis-Mark, P. J., Sori, M. M., Scheidt, S. P., & Bramson, A. M. (2018). Episodes of aqueous flooding and volcanism associated with Hrad Vallis, Mars. Journal of Geophysical Research: Planets.
- Hamilton, C., Mouginis-Mark, P., Sori, M., Scheidt, S., & Bramson, A. (2018). Episodes of Aqueous Flooding and Effusive Volcanism Associated With Hrad Vallis, Mars. Journal of Geophysical Research (Planets), 123, 1484-1510.
- Savage, R., Palafox, L. F., Morrison, C. T., Rodriguez, J. J., Barnard, K. J., Byrne, S., & Hamilton, C. W. (2018). A Bayesian Approach to Sub-Kilometer Crater Shape Analysis using Individual HiRISE Images. IEEE Transactions on Geoscience and Remote Sensing, PP(99), 1-11. doi:10.1109/TGRS.2018.2825608
- Stadermann, A. C., Zanetti, M. R., Jolliff, B. L., Hiesinger, H., van der Bogert, C. H., & Hamilton, C. W. (2018). The age of lunar mare basalts south of the Aristarchus Plateau and effects of secondary craters formed by the Aristarchus event. Icarus. Icarus, 309, 45–60. doi:doi:10.1016/j.icarus.2018.02.030
- Stadermann, A., Jolliff, B., Krawczynski, M., & Hamilton, C. (2018). Experimental Investigation of Fractionation During Solidification of an Incompatible-Element-Rich Lunar Basalt from Apollo 12. LPI Contributions, 2067, 6271.
- Voigt, J. R., & Hamilton, C. W. (2018). Investigating the volcanic versus aqueous origin of the surficial deposits in Eastern Elysium Planitia, Mars.. Icarus, 309, 389–410. doi:doi:10.1016/j.icarus.2018.03.009.
- Bleacher, J. E., Orr, T. R., Zimbleman, J. R., Hamilton, C. W., Crumpler, L. S., & Williams, D. A. (2017). Plateaus and sinuous ridges as the fingerprints of lava flow inflation in the Eastern Tharsis Plains of Mars. Journal of Volcanology and Geothermal Research. doi:10.1016/j.jvolgeores.2017.03.025
- Fitch, E. P., Fagents, S. A., Thordarson, T., & Hamilton, C. W. (2017). Fragmentation mechanisms associated with explosive lava–water interactions in a lacustrine environment. Bulletin of Volcanology, 79(12). doi:10.1007/s00445-016-1087-3
- Hamilton, C. W., Fitch, E. P., Fagents, S. A., & Thordarson, T. (2017). Rootless tephra stratigraphy and emplacement processes. Bulletin of Volcanology, 79(11). doi:10.1007/s00445-016-1086-4
- Marcucci, E. C., Hamilton, C. W., & Herrick, R. R. (2017). Remote sensing evidence of lava–ground ice interactions associated with the Lost Jim Lava Flow, Seward Peninsula, Alaska. Bulletin of Volcanology, 79(89). doi:doi:10.1007/s00445-017-1176-y. 23.
- Neish, C. D., Hamilton, C. W., Hughes, S. S., Nawotniak, S. K., Garry, W. B., Skok, J. R., Elphic, R. C., Schaefer, E., Carter, L. M., Bandfield, J. L., Osinski, G. R., Lim, D., & Heldmann, J. L. (2017). Terrestrial analogues for lunar impact melt flows. Icarus, 281(1), 73–89. doi:10.1016/j.icarus.2016.08.008
- Palafox, L. F., Hamilton, C. W., Scheidt, S. P., & Alvarez, A. M. (2017). Automated detection of geologic landforms on Mars using Convolutional Neural Networks. Computers and Geosciences, 101, 48–56. doi:10.1016/j.cageo.2016.12.015
- Sori, M. M., Byrne, S., Bland, M. T., Bramson, A. M., Ermakov, A. I., Hamilton, C. W., Otto, K. A., Ruesch, O., & Russell, C. T. (2017). The vanishing cryovolcanoes of Ceres. Geophysical Research Letters, 44(3), 1243–1250. doi:10.1002/2016GL072319
- Whelley, P. L., Garry, W. B., Hamilton, C. W., & Bleacher, J. E. (2017). LiDAR-derived surface roughness signatures of basaltic lava flow textures at the Muliwai a Pele lava channel, Hawaii.. Bulletin of Volcanology, 79(75). doi:doi:10.1007/s00445-017-1161-5
- Sori, M. M., Byrne, S., Hamilton, C. W., & Landis, M. E. (2016). Viscous flow rates of icy topography on the north polar layered deposits of Mars. Geophysical Research Letters, 43(2), 541–549. doi:10.1002/2015GL067298
- Baker, V. R., Hamilton, C. W., Burr, D. M., Gulick, V., Komatsu, G., Luo, W., Rice, J. W., & Rodriguez, J. A. (2015). Fluvial geomorphology on Earth-like planetary surfaces: a review. Geomorphology, 245, 149–182. doi:10.1016/j.geomorph.2015.05.002
- Hamilton, C. W. (2015). Team gets firsthand look at the new Holuhraun eruption site. Eos, 96. doi:10.1029/2015EO041197
- Keske, A. L., Hamilton, C. W., McEwen, A. S., & Daubar, I. J. (2015). Episodes of fluvial and volcanic activity in Mangala Valles, Mars. Icarus, 245, 333-347. doi:10.1016/j.icarus.2014.09.040
- Morrison, A. A., Zanetti, M. R., Hamilton, C. W., Lev, E., & Whittington, A. G. (2018). Rheological investigation of lunar highland and mare impact melt simulants. Icarus.
- Tyler, R. H., Henning, W. G., & Hamilton, C. W. (2015). Tidal heating in a magma ocean on Jupiter's moon Io. The Astrophysical Journal, 218(2), 17pp.. doi:10.1088/0067-0049/218/2/22
- Fink, W., Baker, V. R., Hamilton, C. W., Schulze-Makuch, D., & Tarbell, M. A. (2015). Autonomous exploration of planetary lava tubes using a multi-rover framework. IEEE Aerospace. doi:10.1109/AERO.2015.7119315
- Hamilton, C., Beggan, C., Still, S., Beuthe, M., Lopes, R., Williams, D., Radebaugh, J., & Wright, W. (2013). Spatial distribution of volcanoes on Io: Implications for tidal heating and magma ascent. Earth and Planetary Science Letters, 361, 272-286.
- Boyce, J., Wilson, L., Mouginis-Mark, P., Hamilton, C., & Tornabene, L. (2012). Origin of small pits in martian impact craters. Icarus, 221(1), 262-275.
- Tornabene, L. L., Osinski, G. R., McEwen, A. S., Boyce, J. M., Bray, V. J., Caudill, C. M., Grant, J. A., Hamilton, C. W., Mattson, S., & Mouginis-Mark, P. J. (2012). Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process. Icarus, 220(2), 348-368.
- Hamilton, C. W., Fagents, S. A., & Thordarson, T. (2011). Lava-ground ice interactions in Elysium Planitia, Mars: Geomorphological and geospatial analysis of the Tartarus Colles cone groups. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 116.More infoThe western Tartarus Colles cone groups are located on Mars between northeastern Elysium Planitia and southern Arcadia Planitia (25 degrees N-27 degrees N and 170 degrees E-171 degrees E). This region contains > 40,000 cratered cones covering a total area > 2000 km(2). These landforms have been interpreted as volcanic rootless constructs (VRCs) that were produced by explosive lava-water interactions similar to 75-250 Ma ago. To better constrain their paleoenvironmental significance, we develop photogeological maps, morphological descriptions, lava thickness estimates, and statistical nearest neighbor (NN) analyses. The VRC-hosting Tartarus Colles lava flow exhibits bimodal thicknesses of 25-30 m and 55-60 m, whereas lava thickness associated with rootless eruption sites are unimodal, with a mean of 58 +/- 8 m at 1 standard deviation (sigma). Rootless eruption sites occur in 36 continuous domains with > 10 rootless eruption sites per square kilometer and population sizes (N) > 30. Renormalized Poisson NN analyses show that rootless eruption sites in 26 of 31 domains with N < 3000 are randomly distributed within 2 sigma confidence limits, whereas four of five domains with N > 3000 exhibit statistically significant clustering beyond 2 sigma. Regional clustering of rootless eruption sites in similar to 60 m thick lava is interpreted to be the result of a minimum lava thickness threshold required to volatilize ground ice and generate rootless eruptions before the lava core solidifies. Ground ice continued to melt after VRC formation and formed pitted terrains through thermokarstification. Widespread VRCs and pitted terrains in the Tartarus Colles region imply the presence of a major fossil hydrothermal system that was generated by lava-ground ice interactions during the late to middle Amazonian.
- Beggan, C., & Hamilton, C. W. (2010). New image processing software for analyzing object size-frequency distributions, geometry, orientation, and spatial distribution. COMPUTERS & GEOSCIENCES, 36(4), 539-549.More infoGeological Image Analysis Software (GIAS) combines basic tools for calculating object area, abundance, radius, perimeter, eccentricity, orientation, and centroid location, with the first automated method for characterizing the aerial distribution of objects using sample-size-dependent nearest neighbor (NN) statistics. The NN analyses include tests for (1) Poisson, (2) Normalized Poisson, (3) Scavenged k=1, and (4) Scavenged k=2 NN distributions. GIAS is implemented in MATLAB with a Graphical User Interface (GUI) that is available as pre-parsed pseudocode for use with MATLAB, or as a stand-alone application that runs on Windows and Unix systems. GIAS can process raster data (e.g., satellite imagery, photomicrographs, etc.) and tables of object coordinates to characterize the size, geometry, orientation, and spatial organization of a wide range of geological features. This information expedites quantitative measurements of 20 object properties, provides criteria for validating the use of stereology to transform 2D object sections into 3D models, and establishes a standardized NN methodology that can be used to compare the results of different geospatial studies and identify objects using non-morphological parameters. (C) 2009 Elsevier Ltd. All rights reserved.
- Hamilton, C. W., Fagents, S. A., & Thordarson, T. (2010). Explosive lava-water interactions II: self-organization processes among volcanic rootless eruption sites in the 1783-1784 Laki lava flow, Iceland. BULLETIN OF VOLCANOLOGY, 72(4), 469-485.More infoWe have applied quantitative geospatial analyses to rootless eruption sites in the HnA(0)ta and Hrossatungur groups of the 1783-1784 Laki lava flow to establish how patterns of spatial distribution can be used to obtain information about rootless cone emplacement processes and paleo-environments. This study utilizes sample-size-dependent nearest neighbor (NN) statistics and Voronoi tessellations to quantify the spatial distribution of rootless eruption sites and validate the use of statistical NN analysis as a remote sensing tool. Our results show that rootless eruption sites cluster in environments with abundant lava and water resources, but competition for limited groundwater in these clusters can cause rootless eruption sites to develop repelled distributions. This pattern of self-organization can be interpreted within the context of resource availability and depletion. Topography tends to concentrate lava (fuel) and water (coolant) within topographic lows, thereby promoting explosive lava-water interactions in these regions. Given an excess supply of lava within broad sheet lobes, rootless eruption sites withdraw groundwater from their surroundings until there is insufficient water to maintain analogs to explosive molten fuel-coolant interactions. Rootless eruption sites may be modeled as a network of water extraction wells that draw down the water table in their vicinity. Rootless eruptions at locations with insufficient groundwater may either fail to initiate or terminate before explosive activity has ceased at nearby locations with a greater supply of water, thus imparting a repelled distribution to observed rootless eruption sites.
- Hamilton, C. W., Fagents, S. A., & Wilson, L. (2010). Explosive lava-water interactions in Elysium Planitia, Mars: Geologic and thermodynamic constraints on the formation of the Tartarus Colles cone groups. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 115.More infoVolcanic rootless constructs (VRCs) are the products of explosive lava-water interactions. VRCs are significant because they imply the presence of active lava and an underlying aqueous phase (e.g., groundwater or ice) at the time of their formation. Combined mapping of VRC locations, age-dating of their host lava surfaces, and thermodynamic modeling of lava-substrate interactions can therefore constrain where and when water has been present in volcanic regions. This information is valuable for identifying fossil hydrothermal systems and determining relationships between climate, near-surface water abundance, and the potential development of habitable niches on Mars. We examined the western Tartarus Colles region (25-27 degrees N, 170-171 degrees E) in northeastern Elysium Planitia, Mars, and identified 167 VRC groups with a total area of similar to 2000 km(2). These VRCs preferentially occur where lava is similar to 60 m thick. Crater size-frequency relationships suggest the VRCs formed during the late to middle Amazonian. Modeling results suggest that at the time of VRC formation, near-surface substrate was partially desiccated, but that the depth to the midlatitude ice table was less than or similar to 42 m. This ground ice stability zone is consistent with climate models that predict intermediate obliquity (similar to 35 degrees) between 75 and 250 Ma, with obliquity excursions descending to similar to 25-32 degrees. For lava thicknesses ranging from 30 to 60 m and ground ice fractions ranging from 0.1 to 0.3, an ice volume of similar to 4-23 km(3) could have been melted and/or vaporized by the time the lava solidified, and the associated hydrothermal systems could have retained temperatures >273 K for up to similar to 1300 years.
- Hamilton, C. W., Thordarson, T., & Fagents, S. A. (2010). Explosive lava-water interactions I: architecture and emplacement chronology of volcanic rootless cone groups in the 1783-1784 Laki lava flow, Iceland. BULLETIN OF VOLCANOLOGY, 72(4), 449-467.More infoTo determine the relationships between rootless cone emplacement mechanisms, morphology, and spatial distribution, we mapped the HnA(0)ta and Hrossatungur groups of the 1783-1784 Laki lava flow in Iceland. We based our facies maps on Differential Global Positioning System (DGPS) measurements, photogeological interpretations, and supporting field observations. The study area covers 2.77 km(2) and includes 2216 explosion sites. To establish the timing of rootless cone formation we incorporated tephrochronological constraints from eighty-eight stratigraphic sections and determined that the HnA(0)ta and Hrossatungur groups are composite structures formed by the emplacement of six geographically and chronologically discrete domains. Rootless eruptions initiated in domain 1 on the first day of the Laki eruption (June 8, 1783) and lasted 1-2 days. The second episode of rootless activity began in domain 2 on June 11 and lasted 1-3 days. The four domains of the Hrossatungur group dominantly formed after June 14 and exhibit a complex emplacement sequence that reflects interactions between the Laki lava, contemporaneously emplaced rootless cones, and an existing topographic ridge. In the study area, we identify three distinct rootless cone archetypes (i.e., recurring morphological forms) that are related to tube-, channel-, and broad sheet lobe-fed eruptions. We assert that emplacement of lava above compressible substrates (e.g., unconsolidated sediments) may trigger rootless eruptions by causing subsidence-induced flexure and failure of the basal crust, thereby allowing molten lava (fuel) to come into direct contact with groundwater (coolant) and initiating analogs to explosive molten fuel-coolant interactions (MFCIs).
- Harris, A. J., Favalli, M., Mazzarini, F., & Hamilton, C. W. (2009). Construction dynamics of a lava channel. BULLETIN OF VOLCANOLOGY, 71(4), 459-474.More infoWe use a kinematic GPS and laser range finder survey of a 200 m-long section of the Muliwai a Pele lava channel (Mauna Ulu, Kilauea) to examine the construction processes and flow dynamics responsible for the channel-levee structure. The levees comprise three packages. The basal package comprises an 80-150 m wide 'a'a flow in which a similar to 2 m deep and similar to 11 m wide channel became centred. This is capped by a second package of thin (< 45 cm thick) sheets of pahoehoe extending no more than 50 m from the channel. The upper-most package comprises localised 'a'a overflows. The channel itself contains two blockages located 130 m apart and composed of levee chunks veneered with overflow lava. The channel was emplaced over 50 h, spanning 30 May-2 June, 1974, with the flow front arriving at our section (4.4 km from the vent) 8 h after the eruption began. The basal 'a'a flow thickness yields effusion rates of 35 m(3) s(-1) for the opening phase, with the initial flow advancing across the mapped section at similar to 10 m/min. Short-lived overflows of fluid pahoehoe then built the levee cap, increasing the apparent channel depth to 4.8 m. There were at least six pulses at 90-420 m(3) s(-1), causing overflow of limited extent lasting no more than 5 min. Brim-full flow conditions were thus extremely short-lived. During a dominant period of below-bank flow, flow depth was similar to 2 m with an effusion rate of similar to 35 m(3) s(-1), consistent with the mean output rate (obtained from the total flow bulk volume) of 23-54 m(3) s(-1). During pulses, levee chunks were plucked and floated down channel to form blockages. In a final low effusion rate phase, lava ponded behind the lower blockage to form a syn-channel pond that fed 'a'a overflow. After the end of the eruption the roofed-over pond continued to drain through the lower blockage, causing the roof to founder. Drainage emplaced inflated flows on the channel floor below the lower blockage for a further similar to 10 h. The complex processes involved in levee-channel construction of this short-lived case show that care must be taken when using channel dimensions to infer flow dynamics. In our case, the full channel depth is not exposed. Instead the channel floor morphology reflects late stage pond filling and drainage rather than true channel-contained flow. Components of the compound levee relate to different flow regimes operating at different times during the eruption and associated with different effusion rates, flow dynamics and time scales. For example, although high effusion rate, brim-full flow was maintained for a small fraction of the channel lifetime, it emplaced a pile of pahoehoe overflow units that account for 60% of the total levee height. We show how time-varying volume flux is an important parameter in controlling channel construction dynamics. Because the complex history of lava delivery to a channel system is recorded by the final channel morphology, time-varying flow dynamics can be determined from the channel morphology. Developing methods for quantifying detailed flux histories for effusive events from the evidence in outcrop is therefore highly valuable. We here achieve this by using high-resolution spatial data for a channel system at Kilauea. This study not only indicates those physical and dynamic characteristics that are typical for basaltic lava flows on Hawaiian volcanoes, but also a methodology that can be widely applied to effusive basaltic eruptions.
- Harris, A. J., Dehn, J., James, M. R., Hamilton, C., Herd, R., Lodato, L., & Steffke, A. (2007). Pahoehoe flow cooling, discharge, and coverage rates from thermal image chronometry. GEOPHYSICAL RESEARCH LETTERS, 34(19).More info[1] Theoretically- and empirically-derived cooling rates for active pahoehoe lava flows show that surface cooling is controlled by conductive heat loss through a crust that is thickening with the square root of time. The model is based on a linear relationship that links log( time) with surface cooling. This predictable cooling behavior can be used assess the age of recently emplaced sheet flows from their surface temperatures. Using a single thermal image, or image mosaic, this allows quantification of the variation in areal coverage rates and lava discharge rates over 48 hour periods prior to image capture. For pahoehoe sheet flow at Kilauea (Hawai'i) this gives coverage rates of 1-5 m(2)/min at discharge rates of 0.01-0.05 m(3)/s, increasing to similar to 40m(2)/min at 0.4-0.5 m(3)/s. Our thermal chronometry approach represents a quick and easy method of tracking flow advance over a three-day period using a single, thermal snap-shot.
- Bruno, B. C., Fagents, S. A., Hamilton, C. W., Burr, D. M., & Baloga, S. M. (2006). Identification of volcanic rootless cones, ice mounds, and impact craters on Earth and Mars: Using spatial distribution as a remote sensing tool. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 111(E6).More info[ 1] This study aims to quantify the spatial distribution of terrestrial volcanic rootless cones and ice mounds for the purpose of identifying analogous Martian features. Using a nearest neighbor (NN) methodology, we use the statistics R ( ratio of the mean NN distance to that expected from a random distribution) and c ( a measure of departure from randomness). We interpret R as a measure of clustering and as a diagnostic for discriminating feature types. All terrestrial groups of rootless cones and ice mounds are clustered (R: 0.51 - 0.94) relative to a random distribution. Applying this same methodology to Martian feature fields of unknown origin similarly yields R of 0.57 - 0.93, indicating that their spatial distributions are consistent with both ice mound or rootless cone origins, but not impact craters. Each Martian impact crater group has R >= 1.00 (i.e., the craters are spaced at least as far apart as expected at random). Similar degrees of clustering preclude discrimination between rootless cones and ice mounds based solely on R values. However, the distribution of pairwise NN distances in each feature field shows marked differences between these two feature types in skewness and kurtosis. Terrestrial ice mounds ( skewness: 1.17 - 1.99, kurtosis: 0.80 - 4.91) tend to have more skewed and leptokurtic distributions than those of rootless cones ( skewness: 0.54 - 1.35, kurtosis: - 0.53 - 1.13). Thus NN analysis can be a powerful tool for distinguishing geological features such as rootless cones, ice mounds, and impact craters, particularly when degradation or modification precludes identification based on morphology alone.
Proceedings Publications
- Aleinov, I., Way, M., Head, J., Varnam, M., Tsigaridis, K., Harman, C., Wolf, E., Hamilton, C., & Gronoff, G. (2023, mar). Can Collapse of a Volcanically-Induced Lunar Atmosphere Deliver Volatiles to Permanently Shadowed Regions?. In LPI Contributions, 2806.
- Basu, U., Schroedl, P., Phillips, M., Moersch, J., Warren, K., Maierhaba, Y., & Hamilton, C. (2023, mar). Correlating Aerial and Ground-Based Hyperspectral Data with Microbial Composition and Diversity in a Mars Analog Hydrothermal System in Iceland. In LPI Contributions, 2806.
- Gwizd, S., Stack, K., Calef, F., Francis, R., Tolometti, G., Graff, J., Langley, C., Hanning, K. \., P{\'all, T. V., Bernhar{\dhsson}, E., Phillips, M., Moersch, J., Basu, U., Voigt, J., & Hamilton, C. (2023, mar). Rover-Aerial Vehicle Exploration Network (RAVEN): Mission Planning, Implementation, and Results from the 2022 Rover-Only Field Campaign at Holuhraun, Iceland. In LPI Contributions, 2806.
- Hamilton, C., Voigt, J., Zanetti, M., Hibbard, S., Bremner, P., Schroedl, P., & Neish, C. (2023, mar). The Holuhraun Region of Iceland as a High-Fidelity Planetary Analog Site for Science and Exploration. In LPI Contributions, 2806.
- Hibbard, S., Perkins, R., Neish, C., & Hamilton, C. (2023, mar). Ground-Truthing Satellite Synthetic Aperture Radar Data of a Sand-Covered Lava Flow. In LPI Contributions, 2806.
- Phillips, M., Moersch, J., Basu, U., & Hamilton, C. (2023, mar). HyPyRameter: A Python Toolbox to Calculate Hyperspectral Reflectance Parameters. In LPI Contributions, 2806.
- Shah, J., Carr, B., Hadland, N., Varnam, M., Voigt, J., Basu, U., Bj{\"ornsson}, B., Chen, C., Dong, E., Graff, J., Hibbard, S., Moersch, J., Phillips, M., Springer, J., Neish, C., & Hamilton, C. (2023, mar). Evaluating the Use of Unoccupied Aircraft Systems (UAS) for Planetary Surface Exploration in Analog Terrain. In LPI Contributions, 2806.
- Varnam, M., Hamilton, C., Barnes, J., & Aleinov, I. (2023, mar). The Composition of Lunar Volcanic Volatile Outgassing During Mare Eruptions. In LPI Contributions, 2806.
- Voigt, J., Hamilton, C., & Stack, K. (2023, mar). The 2014-2015 Holuhraun Lava Flow-Field in Iceland as an Analog Site for Young Volcanic Terrains in Elysium Planitia, Mars. In LPI Contributions, 2806.
- Voigt, J., Hamilton, C., Steinbr{\"ugge}, G., Christoffersen, M., Nerozzi, S., Kerber, L., Holt, J., & Carter, L. (2023, mar). Revealing Elysium Planitia's Young Geologic History: Constraining Lava Emplacement Styles, Areas, and Volumes. In LPI Contributions, 2806.
- Zanetti, M., Neish, C., Miller, K., Bremner, P., Hayward, E., Adams, M., Perkins, R., Vanga, S., Hibbard, S., & Hamilton, C. (2023, mar). Applications of Mobile LiDAR for Ultra-High Resolution and GPS-Denied Terrain Mapping in Planetary Analog Environments. In LPI Contributions, 2806.
- Aleinov, I., Way, M., Head, J., Tsigaridis, K., Harman, C., Wolf, E., Gronoff, G., & Hamilton, C. (2022, mar). Early Transient Volcanically-Induced Lunar Atmospheres: Their Longevity and Effect on Volatile Deposition. In 53rd Lunar and Planetary Science Conference, 2678.
- Basu, U., Moersch, J., Hamilton, C., Scheidt, S., Voigt, J., Stack, K., Francis, R., Calef, F., Golombek, M., & Hadland, N. (2022, mar). Selecting Suitable Test Sites at Holuhraun, Iceland, for Mars Mission Simulations Using Rovers and Unmanned Aircraft Systems (UAS). In 53rd Lunar and Planetary Science Conference, 2678.
- Kubas, A., Zanetti, M., Hamilton, C., Voigt, J., Williams, J. -., Pathare, A., & Costello, E. (2022, mar). Crater Size-Frequency Distributions of Interior and Exterior Units at Giordano Bruno. In 53rd Lunar and Planetary Science Conference, 2678.
- Sutton, S., Chojnacki, M., McEwen, A., Kirk, R., Dundas, C., Schaefer, E., Conway, S., Diniega, S., Portyankina, G., Landis, M., Baugh, N., Heyd, R., Byrne, S., Tornabene, L., Ojha, L., & Hamilton, C. (2022, mar). Revealing Active Mars with HiRISE Digital Terrain Models and Orthoimages. In 53rd Lunar and Planetary Science Conference, 2678.
- Sutton, S., Hamilton, C., Cataldo, V., Williams, D., & Bleacher, J. (2022, mar). Channels and Fossae East of Olympus Mons as Indicators of Late Amazonian Volcanic, Hydrological, and Tectonic Processes. In 53rd Lunar and Planetary Science Conference, 2678.
- Aleinov, I., Way, M., Tsigaridis, K., Wolf, E., Harman, C., Gronoff, G., & Hamilton, C. (2021, mar). The Role of the Transient Volcanically-Induced Lunar Atmosphere in Transport and Deposition of Polar Volatiles. In 52nd Lunar and Planetary Science Conference.
- Bapst, J., Parker, T., Balaram, J., Tzanetos, T., Matthies, L., Edwards, C., Freeman, A., Withrow-Maser, S. .., Johnson, W., Amador-French, E. .., Bishop, J., Daubar, I., Dundas, C., Fraeman, A., Hamilton, C., Hardgrove, C., Horgan, B., Leung, C., Lin, Y., , Mittelholz, A., et al. (2021, may). Mars Science Helicopter: Compelling Science Enabled by an Aerial Platform. In Bulletin of the American Astronomical Society, 53.
- Bardabelias, N., Holt, J., Hamilton, C., Christoffersen, M., & Hadland, N. (2021, mar). Characterizing Morphology of Lava Tubes in El Malpais National Monument Using Ground Penetrating Radar and LIDAR. In 52nd Lunar and Planetary Science Conference.
- Daubar, I., Beyer, R. A., Hamilton, V., McEwen, A., Bardabelias, N., Brooks, S. M., Byrne, P. K., Byrne, S., Calef, I., Castillo-Rogez, J., Diniega, S., Gulick, V. C., Hamilton, C. W., Jha, D., Keresztur, A., Nunn, C., Schenk, P., & Sutton, S. S. (2021, may). Extended Missions in Planetary Science: Impacts to Science and the Workforce. In Bulletin of the American Astronomical Society, 53.
- Dundas, C., Byrne, S., Chojnacki, M., Diniega, S., Daubar, I., Hamilton, C., Hansen, C., McEwen, A., Portyankina, G., & Sizemore, H. (2021, may). Current Activity on the Martian Surface: A Key Subject for Future Exploration. In Bulletin of the American Astronomical Society, 53.
- Keane, J., Ahern, A. A., Bagenal, F., Barr, M., Basu, K. o., Becerra, P., Bertrand, T., Beyer, R. A., Bierson, C. J., Bland, M. T., Breuer, D., Davies, A. G., Kleer, K., Pater, I., DellaGiustina, D. N., Denk, T., Echevarria, A., Elder, C. M., Feaga, L. M., , Grava, C., et al. (2021, may). Recommendations for Addressing Priority Io Science in the Next Decade. In Bulletin of the American Astronomical Society, 53.
- Kerber, L., Byrne, P. K., Davies, A. G., Hamilton, C. W., Jha, D., Keane, J. T., Keszthelyi, L., Lopes, R. M., Meyer, H., Head, J., & Elder, C. (2021, may). The Importance of Planetary Volcanism and Key Investigations for the Next Decade. In Bulletin of the American Astronomical Society, 53.
- Schaefer, E., Neish, C., & Hamilton, C. (2021, mar). Strong Variability in the Decameter-Scale Geometries of Lava Flow Margins. In 52nd Lunar and Planetary Science Conference.
- Stadermann, A., Jolliff, B., Krawczynski, M., Hamilton, C., & Barnes, J. (2021, mar). Apollo Sample 12032,366-18: Characterization and Experimental Investigation of a Chemically Evolved Lunar Basalt. In 52nd Lunar and Planetary Science Conference.
- Steinbruegge, G., Romero-Wolf, A. .., Peters, S., Schroeder, D., Carrer, L., Hamilton, C., Carter, L., Bierson, C., Blankenship, D., Chan, K., Fanara, L., Grima, C., Hay, H., Hussmann, H., Keane, J., Maurice, M., Nikolaou, A., Rosas-Ortiz, Y. .., Scanlan, K., , Soderlund, K., et al. (2021, may). PRIME \textemdash A Passive Radar Sounding Concept for Io. In Bulletin of the American Astronomical Society, 53.
- Tolometti, G., Neish, C., Osinski, G., & Hamilton, C. (2021, jun). Applications of Polarimetric Radar Remote Sensing for Planetary Volcanic Exploration. In Workshop on Terrestrial Analogs for Planetary Exploration, 2595.
- Whelley, P., Achilles, C. N., Baldridge, A. M., Banks, M. E., Bell, E., Bernhardt, H., Bishop, J., Blank, J. G., Bower, D. M., Byrne, S., Clark, J., Crown, D. A., Crumpler, L. S., Czarnecki, S., Davies, A., Wet, A., Dean, J. W., Dibb, S., Dong, C., , Edgar, L. A., et al. (2021, may). The Importance of Field Studies for Closing Key Knowledge Gaps in Planetary Science. In Bulletin of the American Astronomical Society, 53.
- Aleinov, I., Way, M., Tsigaridis, K., Wolf, E., Harman, C., Gronoff, G., & Hamilton, C. (2020, mar). Transient Volcanically-Induced Lunar Atmosphere and Its Volatile Transport Efficiency. In Lunar and Planetary Science Conference.
- Kerber, L., Denevi, B., Nesnas, I., Keszthelyi, L., Head, J., Pieters, C., Wilson, L., Haruyama, J., Wagner, R., Hayne, P., Ashley, J., Whitten, J., Stickle, A., Parness, A., Donaldson Hanna, K., Anderson, R., Needham, D., Isaacson, P., Jozwiak, L., , Klima, R., et al. (2020, mar). Moon Diver: Journey into the Ancient Lavas of the Moon. In Lunar and Planetary Science Conference.
- Knudson, C., Achilles, C., Young, K., McAdam, A., Whelley, P., Guzewich, S., Hamilton, C., Voigt, J., & Scheidt, S. (2020, mar). Determining Sulfur Concentrations in a Basaltic Flood Eruption: Tying Chemistry to Atmospheric Modeling. In Lunar and Planetary Science Conference.
- McEwen, A., Kleer, K., Park, R., Bierson, C., Davies, A., DellaGuistina, D., Ermakov, A., Fuller, J., Hamilton, C., Harris, C., Hay, H., Keane, J., Kestay, L., Khurana, K., Kirby, K., Lainey, V., Matsuyama, I., Mandt, K., McCarthy, C., , Nimmo, F., et al. (2020, feb). Tidal Heating: Lessons from Io and the Jovian System; Relevance to Exoplanets. In Exoplanets in Our Backyard: Solar System and Exoplanet Synergies on Planetary Formation, Evolution, and Habitability, 2195.
- Radebaugh}, J., McEwen, A., Ragozzine, D., Keane, J., Davies, A., Kleer, K., Hamilton, C., Nimmo, F., Pommier, A., Wurz, P., & Team, {. (2020, feb). Io as an Extreme Exoplanet Analogue. In Exoplanets in Our Backyard: Solar System and Exoplanet Synergies on Planetary Formation, Evolution, and Habitability, 2195.
- Richardson, J., Baker, D., Shoemaker, E., Scheidt, S., Whelley, P., Young, K., Graff, T., Achilles, C., Carter, L., & Hamilton, C. (2020, mar). Prospecting Buried Ice with Ground Penetrating Radar at Askja Volcano, Northern Iceland. In Lunar and Planetary Science Conference.
- Richardson, J., Sutton, S., Whelley, P., Scheidt, S., Hamilton, C., Needham, D., & Young, K. (2020, mar). Vent Morphology at the Holuhraun Lava Flow (Northern Iceland) as an Analog for Martian Fissure Vents. In Lunar and Planetary Science Conference.
- Schaefer, E., Neish, C., Hamilton, C., Scheidt, S., & Rodriguez, S. C. (2020, mar). The Effects of Sedimentation on the Measured Fractality of Lava Flow Margins. In Lunar and Planetary Science Conference.
- Sutton, S., Richardson, J., Whelley, P., Hamilton, C., Scheidt, S., Young, K., H{\"oskuldsson}, A., J{\'onsd\'ottir}, I., Thordarson, T., & Gallant, E. (2020, mar). The Onset of Degradation of a Large Spatter Rampart in Iceland. In Lunar and Planetary Science Conference.
- Tolometti, G., Neish, C., Osinski, G., Kukko, A., Voigt, J., & Hamilton, C. (2020, mar). Quantifying the Surface Roughness of the 2014-2015 Holuhraun Lava Flow Using Radar and LiDAR Remote Sensing. In Lunar and Planetary Science Conference.
- Voigt, J., Hamilton, C., Scheidt, S., Achilles, C., Dundas, C., Keszthelyi, L., M{\"unzer}, U., & Whelley, P. (2020, mar). Platy Terrain within the 2014-2015 Holuhraun Lava Flow-Field: An Analog for Martian Flood Lavas. In Lunar and Planetary Science Conference.
- Voigt, J., Steinbr{\"ugge}, G., Wolfenbarger, N., Hamilton, C., Soderlund, K., Young, D., Vance, S., Schroeder, D., & Blankenship, D. (2020, mar). Melt Mobilization on Europa and its Application to Manann\'an Crater. In Lunar and Planetary Science Conference.
- Achilles, C., McAdam, A., Knudson, C., Young, K., Bleacher, J., Bower, D., Eigenbrode, J., Hamilton, C., Hewagama, T., Nixon, C., Richardson, J., Scheidt, S., Sutton, S., Voight, J., Wasser, M., Whelley, N., & Whelley, P. (2019, Mar). Acidic Alteration in a Young Basaltic Lava Field: Sulfur-Bearing Products and Implications for Mars. In Lunar and Planetary Science Conference.
- Hay, H., Kleer, K., McEwen, A., Park, R., Bierson, C., Davies, A., DellaGiustina, D., Ermakov, A., Fuller, J., Hamilton, C., Harris, C., Jacobson, R., Keane, J., Kestay, L., Khurana, K., Kirby, K., Lainey, V., Matsuyama, I., McCarthy, C., , Nimmo, F., et al. (2019, May). Tidal Heating: Lessons from Io and the Jovian System (Report from the KISS Workshop). In Ocean Worlds 4, 2168.
- Kerber, L., Denevi, B., Nesnas, I., Keszthelyi, L., Head, J., Pieters, C., Wilson, L., Haruyama, J., Wagner, R., Hayne, P., Ashley, J., Whitten, J., Stickle, A., Parness, A., Donaldson-Hanna, K. .., Anderson, R., Needham, D., Isaacson, P., Jozwiak, L., , Klima, R., et al. (2019, Mar). Moon Diver: A Discovery Mission Concept for Understanding Secondary Crust Formation Through the Exploration of a Lunar Mare Pit Cross-Section. In Lunar and Planetary Science Conference.
- Park, R., Kleer, K., McEwen, A., Bierson, C., Davies, A., DellaGiustina, D., Ermakov, A., Fuller, J., Hamilton, C., Harris, C., Hay, H., Jacobson, R., Keane, J., Kestay, L., Khurana, K., Kirby, K., Lainey, V., Matsuyama, I., McCarthy, C., , Nimmo, F., et al. (2019, Mar). Tidal Heating: Lessons from Io and the Jovian System (Report from the KISS Workshop). In Lunar and Planetary Science Conference.
- Stacey, K., Kerber, L., & Hamilton, C. (2019, Mar). Interactions Between Athabasca Valles Flood Lavas and the Medusae Fossae Formation: Implications for Lava Emplacement Mechanisms and the Triggering of Steam Explosions. In Lunar and Planetary Science Conference.
- Steinbr{\"ugge}, G., Voigt, J., Schroeder, D., Stark, A., Haynes, M., Scanlan, K., Hamilton, C., Young, D., Hussmann, H., Grima, C., & Blankenship, D. (2019, Sep). Reassessing Europa's Surface Roughness. In EPSC-DPS Joint Meeting 2019, 2019.
- Voigt, J., & Hamilton, C. (2019, Mar). Constraining Effusive Eruption Styles Throughout Elysium Planitia, Mars. In Lunar and Planetary Science Conference.
- Bleacher, J., Crumpler, L., Hamilton, C., Zimbelman, J., Garry, W., Wet, A., Whelley, P., & Scheidt, S. (2018, mar). Implications of Inflated Sheet-Like Flow Emplacement on Planetary Surfaces. In Lunar and Planetary Science Conference, 49.
- Hamilton, C., Mouginis-Mark, P., Sori, M., Scheidt, S., & Bramson, A. (2018, mar). Evidence of Lava Flow Inflation Near Hrad Vallis, Mars. In Lunar and Planetary Science Conference, 49.
- Voigt, J., Hamilton, C., Fanara, L., & Steinbr{\"ugge}, G. (2018, mar). A Revised Geologic History for the Major Flow Units in Eastern Elysium Planitia, Mars. In Lunar and Planetary Science Conference, 49.
- Bleacher, J. E., Orr, T., de Wet, A. P., Zimbelman, J. R., Hamilton, C. W., Garry, W. B., & Crumpler, L. (2017, May). Plateaus and sinuous ridges as evidence of lava flow inflation on Mars. In GSA Cordillera Session, Abstract 292581.
- Bonnefoy, L. E., Hamilton, C. W., Scheidt, S. P., Voigt, J., Höskuldsson, Á., Jónsdottir, I., & Thordarson, T. (2017, March). Landscape evolution after the 2014–2015 lava flow at Holuhraun, Iceland. In Lunar and Planetary Science Conference, 48.
- Dundas, C. M., Keszthelyi, L. P., Hamilton, C. W., Bonnefoy, L. E., Scheidt, S. P., Lev, E., Rumpf, M. E., Thordarson, T., Höskuldsson, Á., Jónsdóttir, I., Keske, A., & Sori, M. M. (2017, March). The hydrothermal system of the 2014–2015 lava flows at Holuhraun, Iceland: An analog for martian lava–water interactions. In Lunar and Planetary Science Conference, 48.
- Hamilton, C. W. (2017, August). Explosive lava–water interactions: Tephrostratigraphy and eruption processes. In IAVCEI Scientific Assembly, Abstract 412.
- Hamilton, C. W., Mouginis-Mark, P. J., Sori, M. M., Scheidt, S. P., & Bleacher, J. E. (2017, May). Terrestrial lava-rise plateaus as analogs for martian lobate flow units. In . GSA Cordillera Session, Abstract 292768.
- Hamilton, C. W., Scheidt, S. P., Bleacher, J. E., Whelley, P. L., Garry, W. B., Voigt, J., & Sutton, S. S. (2017, August). Anatomy of streamlined volcanic islands using multi-view stereo-photogrammetry, Kilauea volcano, Hawaii. In IAVCEI Scientific Assembly, Abstract 924.
- Hamilton, C. W., Scheidt, S. P., de Wet, A. P., Huff, A. E., Speiser, W. H., Needham, D. H., Schaefer, E. I., Sutton, S. S., Moersch, J. E., Kling, C. L., Rader, E., Ryan, A. J., Keske, A. L., Moyer, D. K., & Dundas, C. M. (2017, August). Sinuous Channel Formation within the Laki Lava Flow: A Consequence of “fill and spill” emplacement. In IAVCEI Scientific Assembly, Abstract 432.
- Keszthelyi, L. P., Dundas, C. D., Hamilton, C. W., Scheidt, S. P., Sori, M. M., Lev, E., Rumpf, M. E., Duhamel, S., Thordarson, T., Björnsdóttir, S., & Keske, A. (2017, Spring). An exceptional active Icelandic analog for recent habitable environments on Mars created by lava–water interaction. In Astrobiology Science Conference.
- Lev, E., Hamilton, C. W., Scheidt, S. P., & Rumpf, M. E. (2017, Fall). Mapping lava flow morphology and structure with unmanned aerial vehicles. In Virtual Geoscience Conference.
- Marcucci, E. C., Hamilton, C. W., & Herrick, R. R. (2017, March). Lava–ground-ice interactions associated with the Lost Jim Lava Flow, Seward Peninsula, Alaska. In Lunar and Planetary Science Conference, 48.
- Morrison, A., Zanetti, M., Hamilton, C. W., Neish, C. D., Lev, E., & Whittington, A. (2017, August). Rheology of lunar highland and mare impact melt simulants: JSC-1a, Stillwater anorthosite, and Stillwater norite. In IAVCEI Scientific Assembly, Abstract 873.
- Needham, D. H., Hamilton, C. W., Bleacher, J. E., Whelley, P. L., Young, K. E., Scheidt, S. P., Richardson, J. A., & Sutton, S. S. (2017, March). Lava eruption and emplacement: Using clues from Hawaiʽi and Iceland to probe the lunar past. In Lunar and Planetary Science Conference, 48.
- Schaefer, E. I., Hamilton, C. W., Neish, C. D., Breard, S. P., Bramson, A. M., Sori, M. M., & Rader, E. L. (2017, December). Decoding the margins: What can the fractal geometry of basaltic lava flow margins tell us?. In American Geophysical Union General Assembly.
- Schaefer, E. I., Hamilton, C. W., Neish, C. D., Sori, M. M., Beard, S. P., Peters, S. I., Miller, T. A., & Rader, E. L. (2017, March). Seeing pāhoehoe from orbit (without squinting). In Lunar and Planetary Science Conference, 48.
- Sori, M. M., Byrne, S., Bland, M. T., Bramson, A. M., Ermakov, A. I., Hamilton, C. W., Otto, K. A., Ruesch, O., & Russell, C. T. (2017, Spring). The vanishing cryovolcanoes of Ceres. In Lunar and Planetary Science Conference, 48.
- Stadermann, A. C., Hamilton, C. W., & Neish, C. D. (2017, August). Mapping lunar impact melt around Giordano Bruno Crater. In IAVCEI Scientific Assembly, Abstract 1122.
- Stadermann, A. C., Krawczynski, M. J., Jollif, B. L., & Hamilton, C. W. (2017, March). Analysis and experimental investigation of Apollo basalt sample 12032,366-18. In Lunar and Planetary Science Conference, 48.
- Sutton, S. S., Hamilton, C. W., Bleacher, J. E., & Williams, D. A. (2017, August). Channelized flows East of Olympus Mons, Mars. In IAVCEI Scientific Assembly, Abstract 461.
- Voigt, J., Hamilton, C. W., Jónsdóttir, I., Höskuldsson, Á., & Þórðarson, Þ. (2017, Spring). Facies relationships and emplacement history of the 2014–2015 eruption at Holuhraun, Iceland. In European Geophysical Union, General Assembly.
- Voigt, J., Hamilton, C. W., Scheidt, S. P., Bonnefoy, L. E., Jónsdóttir, I., Höskuldsson, A., & Thordarson, T. (2017, September). Holuhraun 2014−2015 eruption site on Iceland: A flood lava analogue for Mars.. In European Planetary Science Congress (EPSC), Abstract EPSC2017-848.
- Whelley, P. J., Garry, W. B., Hamilton, C. W., Richardson, J., & Bleacher, J. E. (2017, August). Using roughness patterns to study volcanic deposit textures in remotely sensed topographic data. In IAVCEI Scientific Assembly, Abstract 492.
- Whelley, P. J., Scheidt, S. P., Garry, W. B., Richardson, J., Hamilton, C. W., & Bleacher, J. E. (2017, August). Comparison and fusion of ultra-high-resolution topographic data at Kīlauea volcano, Hawaii. In IAVCEI Scientific Assembly, Abstract 497.
- Whelley, P. L., Richardson, J. A., & Hamilton, C. W. (2017, March). Lava channel textures in Tartarus Colles, Elysium Planitia, Mars. In Lunar and Planetary Science Conference, 48.
- deWet, A. P., Hamilton, C. W., Scheidt, S. P., Zeller, L., Sainvil, A. K., & Bryson, N. (2017, May). Large channel-fed rootless volcanic cone complex, Laki, Iceland. In GSA Cordillera Session, Abstract 292581.
- Bleacher, J. E., Hamilton, C. W., Glavin, D. P., McAdam, A. C., Eigenbrode, J. L., Young, K. E., Garry, W. B., Rogers, A. D., Glotch, T. D., Eppler, D. B., Petro, N. E., Stern, J. C., Trainer, M. G., Conrad, P. G., & Guzewich, S. D. (2016, mar). NASA Goddard Instrument Field Team: A facility enabling planetary science field testing of new instrument designs. In Lunar and Planetary Science Conference, 47.
- Marcucci, E. C., Hamilton, C. W., & Herrick, R. R. (2016, mar). Lava–ice interactions in Lost Jim Lava Flow, Seward Peninsula, Alaska, and Tartarus Colles Lava Flow, Elysium Planitia, Mars. In Lunar and Planetary Science Conference, 47, 2893.
- Moersch, J., Andersen, D., Fedo, C., Hamilton, C. W., Muhlbauer, J., Pollard, W., Scheidt, S. P., & Taggart, J. (2016, Fall). UAV studies of terrestrial analogs for martian geology. In Virtual Geoscience Conference.
- Mouginis-Mark, P. J., & Hamilton, C. W. (2016, jun). 1:175K mapping of Hrad Vallis, Mars. In Annual Planetary Geologic Mappers Meeting, 7005.
- Needham, D. H., Hamilton, C. W., Bleacher, J. E., Whelley, P. L., Young, K. E., Scheidt, S. P., Richardson, J. A., & Sutton, S. S. (2016, nov). Lava eruption and emplacement: Using clues from Hawaii and Iceland to probe the lunar past. In Annual Meeting of the Lunar Exploration Analysis Group, 1960.
- Richardson, J. A., Whelley, P., Hurwitz-Needham, D., Byrne, S., & Hamilton, C. W. (2016, December). Repeat terrestrial lidar mapping of the new volcanic vent at Holuhraun, Iceland. In American Geophysical Union General Assembly.
- Schaefer, E. I., Neish, C. D., Sori, M. M., & Hamilton, C. W. (2016, mar). Mandelbrot's inferno: Exploring the fractality of lava flow margins in Iceland and Hawaii. In Lunar and Planetary Science Conference, 47, 2831.
- Sori, M. M., Byrne, S., Hamilton, C. W., & Landis, M. E. (2016, sep). The importance of ice flow at the North Pole of Mars. In International Conference on Mars Polar Science and Exploration, 6, 6001.
- Sori, M. M., Hamilton, C. W., Lev, E., & Scheidt, S. (2016, mar). Numerical modeling of lava flow behavior on Earth and Mars: A multi-Layer rheological approach. In Lunar and Planetary Science Conference, 47, 2909.
- Sutton, S. S., Hamilton, C. W., & Bleacher, J. E. (2016, mar). Investigating Channel Morphologies in the Eastern Olympus Mons Region of Mars: Implications for Volcanic and Fluvial Processes. In Lunar and Planetary Science Conference, 47.
- Voigt, J., & Hamilton, C. W. (2016, mar). Investigating the volcanic or/and fluvioglacial origin of surficial deposits in Eastern Elysium Planitia, Mars. In Lunar and Planetary Science Conference, 47, 2849.
- Bleacher, J. E., Hamilton, C. W., Scheidt, S. P., Garry, W. B., de Wet, A., Whelley, P., & Williams, D. A. (2015, mar). No erosion needed: Development of streamlined islands during lava channel construction. In Lunar and Planetary Science Conference, 46, 2182.
- Fink, W., Baker, V. R., Schulze-Makuch, D., Hamilton, C. W., & Tarbell, M. A. (2015, mar). Multi-rover framework to autonomously explore planetary lava tubes. In Lunar and Planetary Science Conference, 46, 3011.
- Hamilton, C. W., Palafox, L. F., & Morrison, C. T. (2015, June-July). Automated detection of geologic changes on Mars using Bayesian models. In International Union of Geodesy and Geophysics, General Assembly, 26.
- Hamilton, C. W., Scheidt, S. P., Bleacher, J. E., Irwin, R. P., & Garry, W. B. (2015, mar). ''Fill and spill'' lava emplacement associated with the December 1974 Flow on Kilauea Volcano, Hawaii, USA. In Lunar and Planetary Science Conference, 46, 1072.
- Ingibjörg, I., Þórðarson, Þ., Höskuldsson, Á., Davis, A., Schneider, D., Wright, R., Kestay, L., Hamilton, C., Harris, A., Coppola, D., Guðmundsson, M. T., Durig, T., Pedersen, G., Drouin, V., Höskuldsson, F., Símonarson, H., Örn Arnarson, G., Örn Einarsson, M., & Riishuus, M. (2015, apr). Real-time satellite monitoring of Nornahraun lava flow NE Iceland. In European Geophysical Union, General Assembly, 17.
- Kerber, L., Hamilton, C. W., & Scheidt, S. P. (2015, may). The Aerodynamic Roughness of Mars-Like Surfaces. In Annual International Planetary Dunes Workshop, 4, 1843.
- Neish, C., Hughes, S., Hamilton, C., Kobs Nawotniak, S., Garry, W., Skok, J., Elphic, R., Carter, L., Bandfield, J., Osinski, G., Lim, D., & Heldmann, J. (2015, nov). Transitional lava flows as potential analogues for lunar impact melts. In AAS/Division for Planetary Sciences Meeting Abstracts, 47.
- Palafox, L. F., Alvarez, A. M., & Hamilton, C. W. (2015, mar). Automated detection of impact craters and volcanic rootless cones in Mars satellite imagery using convolutional neural networks and support vector machines. In Lunar and Planetary Science Conference, 46, 2316.
- Pedersen, G. B., Höskuldsson, A., Riishuus, M. S., Jónsdóttir, I., Gudmundsson, M. T., Sigmundsson, F., Óskarsson, B. V., Dürig, T., Drouin, V. J., Gallagher, C., Askew, R., Moreland, W. M., Dumont, S., Davies, A., Keszthelyi, L., Hamilton, C. W., & Þórdarson, Þ. (2015, mar). Nornahraun lava morphology and emplacement: A new terrestrial analogue for planetary lava flows. In Lunar and Planetary Science Conference, 46, 1845.
- Schaefer, E. I., Beard, S. P., JeongAhn, Y., Tan, X., & Hamilton, C. W. (2015, mar). Exploring self-similarity in Hawaiian lava flows. In Lunar and Planetary Science Conference, 46, 2972.
- Scheidt, S. P., & Hamilton, C. W. (2015, mar). Generation of Ultrahigh Spatial Resolution Digital Terrain Models for a Martian Lava Flow Analog from Kilauea Volcano, Hawaii. In Lunar and Planetary Science Conference, 46.
- Scheidt, S. P., Palafox, L. F., Hamilton, C. W., & Zimbelman, J. R. (2015, may). Automated detection of transverse aeolian ridges on Mars using convolutional neural networks and a field-based terrestrial orthoimage training set. In Annual International Planetary Dunes Workshop, 4, 8047.
- Sori, M. M., Byrne, S., Hamilton, C. W., & Landis, M. E. (2015, mar). Is viscous flow important at the martian poles?. In Lunar and Planetary Science Conference, 46, 1541.
- Chojnacki, M., McEwen, A., Dundas, C., Hamilton, C., & Mattson, S. (2014, jul). Active Processes in Valles Marineris. In Eighth International Conference on Mars, 1791.
- Hamilton, C. W., Bleacher, J. E., Irwin, R. P., & Mazarico, E. M. (2014, March). Sinuous channels East of Olympus Mons, Mars: Implications for volcanic and fluvial processes. In Lunar and Planetary Science Conference, 45, 1555.More infoLPI Contribution No. 1777; Page: 1555; Dates: 03/17-03/21
- Keske, A. L., McEwen, A. S., Hamilton, C. W., & Daubar, I. J. (2014, March). Distinguishing volcanic and fluvial activity in Mangala Valles, Mars via geomorphic mapping. In Lunar and Planetary Science Conference, 45, 2356.More infoLPI Contribution No. 1777; Page: 2440; Dates: 03/17-03/21
- Scheidt, S. P., Hamilton, C. W., Zimbelman, J. R., Bleacher, J. E., Garry, W. B., deWet, A. P., & Crumpler, L. S. (2014, March). Lava-rise plateaus and inflation pits within the McCartys Flow, New Mexico. In Lunar and Planetary Science Conference, 45, 1491.More infoLPI Contribution No. 1777; Page: 1491; Dates: 03/17-03/21
- Whelley, P., Garry, W., Scheidt, S., Irwin, R., Fox, J., Bleacher, J., & Hamilton, C. (2014, December). Lava flow texture LiDAR signatures. In American Geophysical Union, Fall Meeting, V13C-4800.
- von Meerscheidt, H., Brand, B., deWet, A., Bleacher, J., Hamilton, C., & Samuels, R. (2014, December). The influence of topographic obstacles on basaltic lava flow morphologies. In American Geophysical Union, Fall Meeting.
- {Ryan}, A., {Hamilton}, C., , P. (2014, jul). Lava Coils in Context: Dynamics of the Athabasca Valles Lava Flow. In Eighth International Conference on Mars, 1791.
- Arzoumanian, Z., Bleacher, J. E., Gendreau, K., McAdam, A., Shearer, C., Hamilton, C. W., Rice, J., & Garry, W. B. (2013, March). Chromatic Mineral Identification and Surface Texture (CMIST) Instrument: A Next Generation Contact XRD/XRF Tool. In Lunar and Planetary Science Conference, 44.More infoDates: 03/18-03/22; LPI Contribution No. 1719; Page:2116
- Baloga, S. M., Glaze, L. S., & Hamilton, C. W. (2013, Fall). A new simulation approach for modeling inflated pahoehoe lava flows. In American Geophysical Union, Fall Meeting.More infoAbstract #V13E-2653
- Bleacher, J. E., Orr, T., Garry, W. B., Hamilton, C. W., Zimbelman JR, ., & de Wet, A. (2013, March). Sinuous ridges and plateaus as evidence for lava flow inflation in the Tharsis Plains of Mars: Insights from analogous features on the coastal plain of Kilauea Volcano, HI. In Lunar and Planetary Science Conference, 44, 2090.More infoDates: 03/18-03/22; LPI Contribution No. 1719; Page: 2090
- Fitch, E. P., Hamilton, C. W., Fagents, S. A., & Thordarson, T. (2013, December). Stages of rootless cone formation observed within the Raudhólar cone group, Iceland. In American Geophysical Union, Fall Meeting.More infoAbstract #V41D-2838
- Hamilton, C. (2013, April). Volcanism on Jupiter's moon Io and its relation to interior processes. In EGU General Assembly 2013, 15.More infoDates: 04/07-04/12; id. EGU2013-545
- Hamilton, C. W. (2013, March). Flood lavas associated with the Cerberus Fossae 2 unit in Elysium Planitia, Mars. In Lunar and Planetary Science Conference, 44, 3070.More infoDates: 03/18-03/22
- Rumpf, M., Fagents, S. A., Hamilton, C. W., & Crawford, I. A. (2013, Fall). Numerical and experimental approaches toward understanding lava flow heat transfer. In American Geophysical Union, Fall Meeting.More infoAbstract #V51D-2707
- Samuels, R., deWet, A., Bleacher, J. E., von Meerscheidt, H. C., Hamilton, C. W., & Garry, W. B. (2013, Fall). Channel and tube flow features associated with the Twin Craters Lava Flow, Zuni-Bandera Volcanic Field, NM: Insights into similar features on Mars. In American Geophysical Union, Fall Meeting.More infoAbstract #V53C-2805
- von Meerscheidt, H. C., Bleacher, J. E., Brand, B. D., deWet, A., Samuels, R., Hamilton, C. W., Garry, W. B., & Bandfield, J. L. (2013, Fall). Shatter complex formation in the Twin Craters Lava Flow, Zuni-Bandera Field, New Mexico. In American Geophysical Union, Fall Meeting 2013, V53C-2806.More infoAbstract #V53C-2806
- Boyce, J. M., Wilson, L., Mouginis-Mark, P. J., Tornabene, L. L., & Hamilton, C. W. (2012, March). Origin of closely-spaced groups of pits in martian craters. In Lunar and Planetary Science Conference, 43, 1017.More infoDates: 03/19-03/23; LPI Contribution No. 1659; id.1017
- Hamilton, C. W., Beggan, C. D., Still, S., Beuthe, M., Lopes, R. M., Williams, D. A., Radebaugh, J., & Wright, W. (2012, March). Cluster analysis of volcanoes on Io: Implications for tidal heating and magma ascent. In Lunar and Planetary Science Conference, 43, 1041.More infoDates: 03/19-03/23; LPI Contribution No. 1659; id.1041
- Tornabene, L. L., Osinski, G. R., McEwen, A. S., Boyce, J. M., Bray, V. J., Caudill, C. M., Grant, J. A., Hamilton, C. W., Mattson, S., Mouginis-Mark, P. J., & Science Team, H. O. (2012, March). Wide-spread occurrence of crater-related pitted materials on Mars: Implications for the role of target volatiles with respect to the impact process. In Lunar and Planetary Science Conference, 43, 2418.More infoDates: 03/19-03/23; LPI Contribution No. 1659; id.2418
Presentations
- Hamilton, C. W. (2014, July). Spatial distribution of volcanoes on Io: Implications for tidal heating and magma ascent. Hawaii Institute of Geophysics and Planetology Lecture Series.
- Hamilton, C. W. (2014, July). Topographic and stochastic influences on pahoehoe lava lobe emplacement. Hawaii Institute of Geophysics and Planetology Lecture Series. University of Hawaii.
- Hamilton, C. W. (2014, September). Flood lava volcanism in Elysium Planitia, Mars. Binghamton Geomorphology Symposium. Knoxville, TN.